-
摘要:
过站航班地面保障过程预测是机场协同决策系统的重要功能。针对目前无法实现过程精细化动态预测且精度较低的问题,提出了一种基于贝叶斯网络的过站航班地面保障过程动态预测方法。建立了地面保障过程贝叶斯网络模型,设计了基于航班属性的初始样本空间生成算法,结合高斯核概率密度估计构建了地面保障过程动态预测方法。某枢纽机场实际数据的仿真结果表明:所提方法在充分考虑航班运行属性的基础上实现了各保障节点的动态预测,其平均绝对误差仅为2.224 1 min,均方根误差相比其他方法低近2 min,能够为机场运行短时战术组织提供客观的决策依据。
Abstract:Prediction of ground support process for transit flights is an important function of airport collaborative decision-making system. Aimed at the problems that the refined dynamic prediction of the process cannot be achieved at present and the accuracy is low, a method for dynamic prediction of the transit ground support process based on the Bayesian network is proposed. A Bayesian network model of ground support process was established. The initial sample space generation algorithm based on flight attributes is designed. Dynamic prediction method of ground support process is constructed in conjunction with Gaussian kernel probability density estimation. According to the simulation results of the actual data of a hub airport, it is shown that the method realizes the dynamic prediction of each support node based on full consideration of flight operation attributes. The average absolute error of each node is only 2.224 1 min, and the root mean square error is about 2 min lower than other methods, which confirm that this method can provide an objective decision-making basis for the short-term tactical organization of airport operations.
-
表 1 过站航班运行过程属性
Table 1. Operation process attributes for transit flights
字段 属性 航司代码 CA 执飞日期 2019-05-10 机位 240 预计到达 14:13 前序架次 9 航班号 1796 机型 B738 航线性质 国内远程 实际到达 14:25 后序架次 12 表 2 过站航班运行过程共享时刻数据
Table 2. Shared time data of operation process for transit flights
保障节点 过程时刻 上轮挡 14:30 下客结束 14:38 机上清洁结束 14:47 垃圾完成 14:49 配餐完成 14:45 添加航油完成 14:51 货舱配载上传 14:55 允许上客发布 15:57 机务巡检确认 14:25 上客结束 15:16 撤轮挡 15:19 实际起飞 15:31 表 3 单航班动态预测结果
Table 3. Dynamic prediction results for single flight
保障节点 初始预测时间/min 最终预测时间/min 实际时间/min x1 5.2 5.2 5 x2 14.5 14.1 13 x3 25.4 24.1 22 x4 24.1 28.6 24 x5 17.7 19.2 20 x6 23.3 25.8 26 x7 32.5 32.7 30 x8 22.8 22.7 23 x9 29.1 35.9 32 x10 45.4 43.8 41 x11 51.0 54.5 54 表 4 单航班预测误差分析结果
Table 4. Error analysis results of single flight prediction
保障节点 MAE/min MRE x1 0.247 5 0.049 5 x2 1.285 1 0.098 9 x3 4.053 5 0.184 2 x4 2.495 3 0.104 0 x5 1.892 3 0.094 6 x6 0.952 5 0.036 6 x7 3.816 2 0.127 2 x8 0.894 7 0.038 9 x9 2.561 9 0.080 1 x10 4.441 9 0.108 3 x11 1.824 4 0.033 8 表 5 预测精度参数对比
Table 5. Comparison of prediction accuracy parameters
方法 RMSE/min TIC 贝叶斯网络演化 0.998 1 0.009 6 深度神经网络 2.921 7 0.029 7 -
[1] HERREMA F, CURRAN R, VISSER H, et al. Taxi-out time prediction model at charles de gaulle airport[J]. Journal of Aerospace Information Systems, 2018, 15(3): 1-11. doi: 10.2514/1.I010502 [2] 冯霞, 张鑫, 陈锋. 飞机过站上客过程持续时间分布[J]. 交通运输工程学报, 2017, 17(2): 98-105. doi: 10.3969/j.issn.1671-1637.2017.02.011FENG X, ZHANG X, CHEN F. Boarding duration distribution of aircraft turnaround[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 98-105(in Chinese). doi: 10.3969/j.issn.1671-1637.2017.02.011 [3] WEI K J, VIKRANT V, ALEXANDRE J. Airline timetable development and fleet assignment incorporating passenger choice[J]. Transportation Science, 2020, 54(1): 139-163. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3198882 [4] LI M Z, MEGAN S R, HAMSA B. Topological data analysis for aviation applications[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 128(1): 1-11. http://www.sciencedirect.com/science/article/pii/S1366554518314558 [5] CADRARSO L, CELISE D R. Integrated airline planning: Robust update of scheduling and fleet balancing under demand uncertainty[J]. Transportation Research, 2017, 81(8): 227-245. http://www.sciencedirect.com/science/article/pii/S0968090X17301560 [6] WANG J, GUO H, BAKKER M, et al. An integrated approach for surgery scheduling under uncertainty[J]. Computers & Industrial Engineering, 2018, 118(4): 1-8. http://www.sciencedirect.com/science/article/pii/S0360835218300536 [7] LUO Q, CHEN Y R, CHEN L Y, et al. Research on situation awareness of airport operation based on Petri nets[J]. IEEE Access, 2019, 7(1): 25438-25451. http://ieeexplore.ieee.org/document/8649632 [8] BARRATT S T, KOCHENDERFER M J, BOYD S P. Learning probabilistic trajectory models of aircraft in terminal airspace from position data[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3536-3545. doi: 10.1109/TITS.2018.2877572 [9] CHATI Y S, HAMSA B. Modeling of aircraft takeoff weight using Gaussian processes[J]. Air Traffic Control Quarterly, 2018, 26(2): 70-79. http://smartsearch.nstl.gov.cn/paper_detail.html?id=978ceda4fa7d58e7fe5d6a640c0a8ab4 [10] 邢志伟, 朱慧, 李彪, 等. 基于贝叶斯网络的航班离港时间动态估计[J]. 计算机科学, 2019, 46(10): 329-335. doi: 10.11896/jsjkx.181102039XING Z W, ZHU H, LI B, et al. Dynamic estimation of flight departure time based on Bayesian network[J]. Computer Science, 2019, 46(10): 329-335(in Chinese). doi: 10.11896/jsjkx.181102039 [11] 陈欣, 袁建, 戴靓. 基于空间计量模型的机场网络溢出效应研究[J]. 交通运输系统工程与信息, 2019, 19(4): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904030.htmCHEN X, YUAN J, DAI L. Airport network spillover effect with spatial econometric models[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 211-217(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904030.htm [12] 沈琳, 于劲松, 唐荻音, 等. 图模型与学习算法结合的贝叶斯网络自动建模[J]. 北京航空航天大学学报, 2016, 42(7): 1486-1493. doi: 10.13700/j.bh.1001-5965.2015.0445SHEN L, YU J S, TANG D Y, et al. Automatic learning of Bayesian network structure using graph model and learning algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1486-1493(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0445 [13] KO Y, KIM J, RODRIGUE-ZAS S L. Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference[J]. Genes & Genomics, 2019, 41(5): 547-555. doi: 10.1007/s13258-019-00789-8 [14] CONTALDI C, VAFAEE F, NELSON P C. Bayesian network hybrid learning using an elite-guided genetic algorithm[J]. Artificial Intelligence Review, 2018, 29(3): 1-28. doi: 10.1007/s10462-018-9615-5 [15] 邢志伟, 何川, 罗谦, 等. 基于双层k近邻算法航站楼短时客流量预测[J]. 北京航空航天大学学报, 2019, 45(1): 26-34. doi: 10.13700/j.bh.1001-5965.2018.0259XING Z W, HE C, LUO Q, et al. Terminal building short-term passenger flow forecast based on two-tier k-nearest neighbor algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 26-34(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0259 [16] CAI P L, WANG Y P, LU G Q, et al. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016, 6(2): 21-34. http://www.sciencedirect.com/science/article/pii/S0968090X15003812 [17] PROKHORCHUK A, DAUWELS J, JAILLET P. Estimating travel time distributions by Bayesian network inference[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1867-1876. doi: 10.1109/TITS.2019.2899906 [18] CHEN G, GE Z. Hierarchical Bayesian network modeling framework for large-scale process monitoring and decision making[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 671-679. doi: 10.1109/TCST.2018.2882562 [19] MEGHAN C B. Safety of flight prediction for small unmanned aerial vehicles using dynamic Bayesian networks[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2018. [20] XU B, SHOU Y, LUO J, et al. Neural learning control of strict-feedback systems using disturbance observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5): 1296-1307. doi: 10.1109/TNNLS.2018.2862907 [21] 谢海红, 戴许昊, 齐远, 等. 短时交通流预测的改进K近邻算法[J]. 交通运输工程学报, 2014, 14(3): 87-94. doi: 10.3969/j.issn.1671-1637.2014.03.017XIE H H, DAI X H, QI Y, et al. Improved K-nearest neighbor algorithm for short-term traffic forecasting[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94(in Chinese). doi: 10.3969/j.issn.1671-1637.2014.03.017 [22] TIAN Z D, LI S J, WANG Y H, et al. A prediction method based on wavelet transform and multiple model fusion for chaotic time series[J]. Chaos, Solitons & Fractals, 2017, 98: 158-172. http://www.sciencedirect.com/science/article/pii/S0960077917300747 [23] ROBINSON E, BALLAKRISHNAN H, ABRAMSON M, et al. Optimized stochastic coordinated planning of asynchronous air and space assets[J]. Journal of Aerospace Information Systems, 2017, 14(1): 10-25. doi: 10.2514/1.I010415 [24] CARLOS S C, SALAZAR H, MORENO R, et al. Stochastic planning of electricity and gas networks: An asynchronous column generation approach[J]. Applied Energy, 2019, 233(1): 1065-1077. http://www.sciencedirect.com/science/article/pii/S0306261918314594 [25] 邢志伟, 李彪, 朱慧, 等. 基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报, 2020, 32(4): 678-686. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202004017.htmXING Z W, LI B, ZHU H, et al. Research on flight ground service time prediction based on deep neural network[J]. Journal of System Simulation, 2020, 32(4): 678-686(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202004017.htm