留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速高压宽温域动压密封动环端面微变形及其改善方法

李世聪 钱才富 李双喜 钟建锋 刘兴华

李世聪, 钱才富, 李双喜, 等 . 高速高压宽温域动压密封动环端面微变形及其改善方法[J]. 北京航空航天大学学报, 2021, 47(6): 1173-1185. doi: 10.13700/j.bh.1001-5965.2020.0167
引用本文: 李世聪, 钱才富, 李双喜, 等 . 高速高压宽温域动压密封动环端面微变形及其改善方法[J]. 北京航空航天大学学报, 2021, 47(6): 1173-1185. doi: 10.13700/j.bh.1001-5965.2020.0167
LI Shicong, QIAN Caifu, LI Shuangxi, et al. Face micro-deformation and its control method of rotating ring of hydrodynamic face seal under high speed, high pressure and wide temperature range[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1173-1185. doi: 10.13700/j.bh.1001-5965.2020.0167(in Chinese)
Citation: LI Shicong, QIAN Caifu, LI Shuangxi, et al. Face micro-deformation and its control method of rotating ring of hydrodynamic face seal under high speed, high pressure and wide temperature range[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1173-1185. doi: 10.13700/j.bh.1001-5965.2020.0167(in Chinese)

高速高压宽温域动压密封动环端面微变形及其改善方法

doi: 10.13700/j.bh.1001-5965.2020.0167
基金项目: 

国家重点研发计划 2018YFB2000800

中央高校基本科研业务费专项资金 BHYC1703A

详细信息
    通讯作者:

    李双喜, E-mail: buctlsx@126.com

  • 中图分类号: V232

Face micro-deformation and its control method of rotating ring of hydrodynamic face seal under high speed, high pressure and wide temperature range

Funds: 

National Key R · D Program of China 2018YFB2000800

the Fundamental Research Funds for the Central Universities BHYC1703A

More Information
  • 摘要:

    针对高速高压高温/低温工况下动压密封变形问题,以动压密封的典型结构为研究对象,考虑动环的支撑和约束,建立热固耦合分析模型,研究热载荷、力载荷和约束对动环端面微变形的影响,并提出动环端面微变形改善方法。结果表明:多载荷共同作用时,温差对动环端面微变形影响最大,其次是转速和压力;在2种情况下,动环端面微变形受温度值的影响很小,主要与温差有关;相比低温,动环端面微变形更易受高温的影响,单位温差的变形变化量为3~4倍;动环形心距旋转中心越远,动环端面微变形受转速影响越大,且呈抛物线关系;动环端面微变形与压差呈线性关系。对高速高压宽温域的动压密封,控制动环端面微变形,首先,应降低动环的温差;其次,若转速够高,应适当增加动环厚度,通过扩大形心变化区域能增加86%的动环端面微变形范围,若转速不够高,通过合理的结构设计约束动环内表面以控制动环翻转,最大能降低65.2%的动环端面微变形;最后,合理设计的轴向压紧力能进一步确保动环端面微变形维持在极小范围内。

     

  • 图 1  动压密封的基本结构及动环结构

    Figure 1.  Basic structure of hydrodynamic face seal and structure of rotating ring

    图 2  柱坐标系与边界条件示意图

    Figure 2.  Schematic diagram of cylindrical coordinates and boundary conditions

    图 3  动环端面变形量的对比

    Figure 3.  Comparison of face deformation amount of rotating ring

    图 4  不同温差的动环轴向位移和端面微变形

    Figure 4.  Axial displacement and face micro-deformation of rotating ring under different temperature differences

    图 5  不同温度值的动环端面微变形

    Figure 5.  Face micro-deformation of rotating ring under different temperatures

    图 6  不同转速的动环轴向位移和端面微变形

    Figure 6.  Axial displacement and face micro-deformation of rotating ring under different rotational speeds

    图 7  不同压差的动环轴向位移和端面微变形

    Figure 7.  Axial displacement and face micro-deformation of rotating ring under different pressure differences

    图 8  多载荷共同作用下动环端面微变形

    Figure 8.  Face micro-deformation of rotating ring under multiple loads

    图 9  轴向压紧力对动环端面微变形的影响

    Figure 9.  Face micro-deformation of rotating ring under different clamping loads

    图 10  形心位置与动环端面微变形的关系

    Figure 10.  Relationship between centroid position and face micro-deformation of rotating ring

    表  1  动环结构参数及动环结构形式

    Table  1.   Structural parameters of rotating ring and structure form of rotating ring

    参数 数值
    轴径d1/mm 50
    定位环外径d2/mm 58
    动环外径d3/mm 76
    压紧环外径d4/mm 55
    结构Ⅰ动环尾部外径d5/mm 57
    结构Ⅰ动环厚度δ1/mm 10
    结构Ⅱ、Ⅲ动环厚度δ2/mm 6
    定位环厚度δ3/mm 4
    结构Ⅰ背部倾斜角α1/(°) 15
    结构Ⅱ背部倾斜角α2/(°) 25
    下载: 导出CSV

    表  2  载荷、约束与温度边界条件

    Table  2.   Load, constraint and temperature boundary conditions

    边界 载荷与约束 温度
    AB 零压力 T2
    BC 零压力 T2
    CD pcla + padd T2
    DE 零压力 T2
    EF 0.82p1 + ps
    FG p1 T1
    GA 约束轴向(z向)位移 绝热
    下载: 导出CSV

    表  3  操作参数

    Table  3.   Operating parameters

    参数 数值
    外壁面温度T1/℃ -200~300
    内壁面温度T2/℃ -200~300
    介质压力p1/MPa 0~20
    轴向压紧力pcla/MPa 25~100
    转速ω/(r·min-1) 0~100 000
    下载: 导出CSV

    表  4  材料属性

    Table  4.   Material properties

    物理性能 GH4169 S30408
    弹性模量E/GPa 205 193
    泊松比μ 0.3 0.3
    导热系数
    k/(W·(m·℃)-1)
    13.4 17.2
    恒压热容
    Cp/(J·(kg·℃)-1)
    435 500
    线膨胀系数
    αl/(10-6·℃-1)
    11.8 (20~100 ℃)
    13.0 (20~200 ℃)
    13.5 (20~300 ℃)
    16.0 (20~100 ℃)
    16.8 (20~200 ℃)
    17.5 (20~300 ℃)
    密度ρ/(kg·m-3) 8 240 7 930
    下载: 导出CSV

    表  5  验证性参数

    Table  5.   Confirmatory parameters

    参数 数值
    内面板半径Ri/mm 109
    外面板半径Re/mm 153
    外半径R0/mm 156
    水力半径Rh/mm 122
    转速ω/(r·min-1) 1 500
    出口压力pi/MPa 0.55
    入口压力po/MPa 15.5
    密封圈的弹性模量E1/GPa 310
    钢的弹性模量E2/GPa 200
    密封圈导热系数k1/(W·(m·℃)-1) 22
    钢的导热系数k2/(W·(m·℃)-1) 30
    密封圈的线膨胀系数β1/(10-6-1) 2.5
    钢的线膨胀系数β2/(10-6-1) 12
    螺钉预紧力Fpre/N 8×5 000
    下载: 导出CSV
  • [1] 张振强, 杨兵华, 赵洋, 等. 某型航空发动机主轴轴承试验故障分析及改进[J]. 轴承, 2017(11): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201711013.htm

    ZHANG Z Q, YANG B H, ZHAO Y, et al. Fault analysis and improvement on test for spindle bearings in an aero-engine[J]. Bearing, 2017(11): 52-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201711013.htm
    [2] 谢伟松, 林鑫, 王伟韬, 等. 航空发动机弹性箔片气体动压轴承技术研究及性能评价综述[J]. 润滑与密封, 2018, 43(7): 136-147. doi: 10.3969/j.issn.0254-0150.2018.07.025

    XIE W S, LIN X, WANG W T, et al. Review of technique application and performance evaluation for aerodynamic elastic foil gas bearing in aero-engine[J]. Lubrication Engineering, 2018, 43(7): 136-147(in Chinese). doi: 10.3969/j.issn.0254-0150.2018.07.025
    [3] 杨霞辉, 王少鹏, 侯宁涛. 液体推进系统高温高压动密封发展趋势分析[J]. 火箭推进, 2010, 36(4): 31-35. doi: 10.3969/j.issn.1672-9374.2010.04.006

    YANG X H, WANG S P, HOU N T. Trend of seals working under high temperatures and pressures for liquid propellant engines[J]. Journal of Rocket Propulsion, 2010, 36(4): 31-35(in Chinese). doi: 10.3969/j.issn.1672-9374.2010.04.006
    [4] 孙电锋, 孙见君, 於秋萍, 等. 非接触式机械密封动力学研究进展[J]. 化工进展, 2019, 38(12): 5238-5246. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201912003.htm

    SUN D F, SUN J J, YU Q P, et al. Progress of study on dynamics of non-contacting mechanical seals[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5238-5246(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201912003.htm
    [5] 赵伟刚, 张树强, 陈杰, 等. 液氧泵用动静压混合式密封关键技术研究[J]. 润滑与密封, 2017, 42(1): 111-115. doi: 10.3969/j.issn.0254-0150.2017.01.019

    ZHAO W G, ZHANG S Q, CHEN J, et al. Key technologies of dynamic-hydrostatic hybrid seals used in liquid oxygen pump[J]. Lubrication Engineering, 2017, 42(1): 111-115(in Chinese). doi: 10.3969/j.issn.0254-0150.2017.01.019
    [6] AIMONE R J, FORSTHOFFER W E, SALZMANN R M. Dry gas seal systems: Best practices for design and selection, which can help prevent failures[J]. Turbomachinery International, 2007, 48(1): 20-21.
    [7] KRIVSHICH N G, PAVLYUK S A, KOLESNIK S A, et al. Dry gas seal systems for equipment with slow shaft rotation[J]. Chemical and Petroleum Engineering, 2007, 43(11-12): 676-680. doi: 10.1007/s10556-007-0121-x
    [8] 李世聪, 钱才富, 李双喜, 等. 油气两相动压密封动态特性的热流固耦合研究[J]. 化工学报, 2020, 71(5): 2190-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202005025.htm

    LI S C, QIAN C F, LI S X, et al. Study of thermal-fluid-solid coupling on dynamic characteristics of oil-gas miscible backflow pumping seal[J]. Journal of Chemical Industry and Engineering, 2020, 71(5): 2190-2201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202005025.htm
    [9] TABATA H, SANO M. Study of high efficiency turbocompressor: Development of high-speed and high-pressure dry gas seal[J]. IHI Engineering Review, 2005, 38(1): 1-5. http://cat.inist.fr/?aModele=afficheN&cpsidt=16601377
    [10] KAVINPRASAD S, SHANKAR S, KARTHIC M. Experimental and CFD investigations of mechanical seals under dry/compressed air/liquid lubricating conditions[J]. Procedia Engineering, 2013, 64: 419-425. doi: 10.1016/j.proeng.2013.09.115
    [11] SHAHIN I, GADALA M, ALQARADAWI M, et al. Three dimensional computational study for spiral dry gas seal with constant groove depth and different tapered grooves[J]. Procedia Engineering, 2013, 68: 205-212. doi: 10.1016/j.proeng.2013.12.169
    [12] WILBUR S. Design and analysis of helium buffer face seal for high pressure liquid oxygen turbopump of main engine of space shuttle[J]. Missiles and Space Vehicles, 1992(4): 5-17(in Chinese).
    [13] 张国渊, 陈国忠, 赵伟刚, 等. 高速低温动静结合型机械密封结构优化及运转试验[J]. 航空动力学报, 2018, 33(5): 1093-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201805009.htm

    ZHANG G Y, CHEN G Z, ZHAO W G, et al. Optimization and test of parameters of the cryogenic hydrodynamic mechanical seal[J]. Journal of Aerospace Power, 2018, 33(5): 1093-1102(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201805009.htm
    [14] THOMAS S, BRUNETIōRE N, TOURNERIE B. Thermo-elasto-hydrodynamic behavior of mechanical gas face seals operating at high pressure[J]. Journal of Tribology, 2007, 129(4): 841-850. doi: 10.1115/1.2768086
    [15] THOMAS S, BRUNETIōRE N, TOURNERIE B. Numerical modeling of high pressure gas face seals[J]. Journal of Tribology, 2006, 128(2): 396-405. doi: 10.1115/1.2164471
    [16] BAI S X, MA C H, PENG X D, et al. Thermo-elasto-hydrodynamic behavior of gas spiral groove face seals operating at high pressure and speed[J]. Journal of Tribology, 2015, 137(2): 1-11. http://www.researchgate.net/publication/276307020_Thermoelastohydrodynamic_Behavior_of_Gas_Spiral_Groove_Face_Seals_Operating_at_High_Pressure_and_Speed
    [17] 胡琼, 陶凯, 孙见君, 等. 剖分式机械密封传热及耦合变形的数值研究[J]. 润滑与密封, 2018, 43(8): 24-31. doi: 10.3969/j.issn.0254-0150.2018.08.005

    HU Q, TAO K, SUN J J, et al. Numerical investigation on heat transfer and thermal-structural coupled deformation of split mechanical seals[J]. Lubrication Engineering, 2018, 43(8): 24-31(in Chinese). doi: 10.3969/j.issn.0254-0150.2018.08.005
    [18] MAYER E. 机械密封[M]. 姚兆生, 译. 北京: 化学工业出版社, 1981: 46-49.

    MAYER E. Mechanical seal[M]. YAO Z S, translated. Beijing: Chemical Industry Press, 1981: 46-49(in Chinese).
    [19] 许静, 彭旭东, 白少先, 等. 高压干气密封扭转变形结构因素影响分析[J]. 摩擦学学报, 2014, 34(5): 543-552. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201405011.htm

    XU J, PENG X D, BAI S X, et al. Analysis of structural factor effect on torsion deformation for a dry gas seal at high pressures[J]. Tribology, 2014, 34(5): 543-552(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201405011.htm
    [20] DOUST T G. An experimental and theoretical study of pressure and thermal distortions in a mechanical seal[J]. ASLE Transactions, 1986, 29(2): 151-159. doi: 10.1080/05698198608981672
    [21] SU H, RAHMANI R, RAHNEJAT H. Thermohydrodynamics of bidirectional groove dry gas seals with slip flow[J]. International Journal of Thermal Sciences, 2016, 110: 270-284. doi: 10.1016/j.ijthermalsci.2016.07.011
    [22] BLASIAK S, ZAHORULKO A V. Aparametric and dynamic analysis of non-contacting gas face seals with modified surfaces[J]. Tribology International, 2016, 94: 126-137. doi: 10.1016/j.triboint.2015.08.014
    [23] 彭旭东, 刘伟, 白少先, 等. 热弹变形对核主泵用流体静压型机械密封性能的影响[J]. 机械工程学报, 2010, 46(23): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201023020.htm

    PENG X D, LIU W, BAI S X, et al. Effects analysis of thermo-elastic deformation on the performance of hydrostatic mechanical seals in reactor coolant pumps[J]. Journal of Mechanical Engineering, 2010, 46(23): 146-153(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201023020.htm
    [24] 丁雪兴, 陆俊杰, 刘勇, 等. 热耗散变形下干气密封系统轴向振动稳定性分析[J]. 振动工程学报, 2016, 29(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201601011.htm

    DING X X, LU J J, LIU Y, et al. Stability analysis on axial vibration of dry gas seal system under the thermo-elastic deformation considering the thermal dissipation[J]. Journal of Vibration Engineering, 2016, 29(1): 78-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201601011.htm
    [25] 丁雪兴, 刘勇, 苏虹, 等. 热弹变形下螺旋槽干气密封泄漏量的计算与分析[J]. 兰州理工大学学报, 2014, 40(6): 75-79. doi: 10.3969/j.issn.1673-5196.2014.06.018

    DING X X, LIU Y, SU H, et al. Calculation and analysis of leakage from spiral groove dry gas seal subjected to thermo-elastic deformation[J]. Journal of Lanzhou University of Technology, 2014, 40(6): 75-79(in Chinese). doi: 10.3969/j.issn.1673-5196.2014.06.018
    [26] 程香平, 刘小红, 张友亮, 等. 锥-孔组合型机械密封端面变形及密封性能分析[J]. 江西科学, 2016, 34(3): 357-363. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKX201603020.htm

    CHENG X P, LIU X H, ZHANG Y L, et al. End face deformation and sealing performance analysis of cone-hole combination mechanical seal[J]. Jiangxi Science, 2016, 34(3): 357-363(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKX201603020.htm
    [27] 陈汇龙, 李同, 任坤腾, 等. 端面变形对液体动压型机械密封液膜瞬态特性的影响[J]. 化工学报, 2017, 68(4): 1533-1541. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201704032.htm

    CHEN H L, LI T, REN K T, et al. Influence of end face deformation on transient characteristics of fluid film in hydrodynamic mechanical seal[J]. Journal of Industry and Engineering, 2017, 68(4): 1533-1541(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201704032.htm
    [28] 陈志, 高昀皞, 赵鹏, 等. 高压干气密封流场数值模拟[J]. 工程科学与技术, 2017, 49(2): 254-261. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201702033.htm

    CHEN Z, GAO Y H, ZHAO P, et al. Numerical simulation of flow field for high pressure dry gas seal[J]. Advanced Engineering Sciences, 2017, 49(2): 254-261(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201702033.htm
    [29] 李庆展, 郑娆, 李世聪, 等. 高速动压密封的气液两相性能对比分析和试验[J]. 哈尔滨工业大学学报, 2019, 51(7): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201907010.htm

    LI Q Z, ZHENG R, LI S C, et al. Comparative analysis and experiment on gas-phase and liquid-phase performance of high-speed hydrodynamic seal[J]. Journal of Harbin Institute of Technology, 2019, 51(7): 70-75(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201907010.htm
    [30] 彭旭东, 冯向忠, 胡丹梅, 等. 非接触式气体润滑密封变形的数值分析[J]. 摩擦学学报, 2004(6): 536-540. doi: 10.3321/j.issn:1004-0595.2004.06.012

    PENG X D, FENG X Z, HU D M, et al. Numerical analysis of deformation of a non-contacting gas lubricated seal[J]. Tribology, 2004(6): 536-540(in Chinese). doi: 10.3321/j.issn:1004-0595.2004.06.012
    [31] 王金红, 陈志, 刘凡, 等. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202004034.htm

    WANG J H, CHEN Z, LIU F, et al. Influence of support boundary conditions of a seal ring on deformation of mechanical seal end face[J]. Journal of Industry and Engnieering, 2020, 71(4): 1744-1753(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202004034.htm
    [32] 廖传军, 黄伟峰, 索双富, 等. 流体静压型机械密封的半解析式流固耦合模型[J]. 机械工程学报, 2010, 46(20): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201020026.htm

    LIAO C J, HUANG W F, SUO S F, et al. Semi-analytical fluid-solid coupling model for hydrostatic mechanical seals[J]. Journal of Mechanical Engineering, 2010, 46(20): 145-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201020026.htm
    [33] 何强, 王洪涛, 黄伟峰, 等. 静压型机械密封中螺钉预紧调节机制的研究[J]. 机械工程学报, 2020, 56(3): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202003017.htm

    HE Q, WANG H T, HUANG W F, et al. Regulation mechanism of screw preloading in hydrostatic mechanical face seals[J]. Journal of Mechanical Engineering, 2020, 56(3): 137-143(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202003017.htm
    [34] 彭旭东, 康玉茹, 孟祥铠, 等. 核主泵用流体静压型机械密封性能的影响因素研究[J]. 机械工程学报, 2012, 48(17): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201217014.htm

    PENG X D, KANG Y R, MENG X K, et al. Study on factors affecting seal performance of a hydrostatic mechanical seal in reactor coolant pumps[J]. Journal of Mechanical Engineering, 2012, 48(17): 83-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201217014.htm
    [35] 肖毅华, 张浩锋, 平学成. 无网格对称粒子法中两类热边界条件的处理[J]. 华东交通大学学报, 2014, 31(4): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201404012.htm

    XIAO Y H, ZHANG H F, PING X C. Treatment of two kinds of thermal boundary conditions in meshless symmetric particle method[J]. Journal of East China Jiaotong University, 2014, 31(4): 65-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201404012.htm
    [36] MA C H, BAI S X, PENG X D. Thermo-hydrodynamic characteristics of spiral groove gas face seals operating at low pressure[J]. Tribology International, 2016, 95: 44-54. doi: 10.1016/j.triboint.2015.11.001
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  562
  • HTML全文浏览量:  95
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-29
  • 录用日期:  2020-07-25
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答