留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Frenet和改进人工势场的在轨规避路径自主规划

刘冰雁 叶雄兵 方胜良 刘怀兴 贾珺

刘冰雁, 叶雄兵, 方胜良, 等 . 基于Frenet和改进人工势场的在轨规避路径自主规划[J]. 北京航空航天大学学报, 2021, 47(4): 731-741. doi: 10.13700/j.bh.1001-5965.2020.0169
引用本文: 刘冰雁, 叶雄兵, 方胜良, 等 . 基于Frenet和改进人工势场的在轨规避路径自主规划[J]. 北京航空航天大学学报, 2021, 47(4): 731-741. doi: 10.13700/j.bh.1001-5965.2020.0169
LIU Bingyan, YE Xiongbing, FANG Shengliang, et al. Autonomous planning of on-orbit evasion path based on Frenet and improved artificial potential field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 731-741. doi: 10.13700/j.bh.1001-5965.2020.0169(in Chinese)
Citation: LIU Bingyan, YE Xiongbing, FANG Shengliang, et al. Autonomous planning of on-orbit evasion path based on Frenet and improved artificial potential field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 731-741. doi: 10.13700/j.bh.1001-5965.2020.0169(in Chinese)

基于Frenet和改进人工势场的在轨规避路径自主规划

doi: 10.13700/j.bh.1001-5965.2020.0169
详细信息
    作者简介:

    刘冰雁 男, 博士研究生, 助理研究员。主要研究方向: 航天器轨道任务智能规划

    叶雄兵 男, 博士, 研究员, 博士生导师。主要研究方向: 运筹学

    方胜良 男, 博士, 教授, 博士生导师。主要研究方向: 空间工程

    刘怀兴 男, 博士研究生, 讲师。主要研究方向: 军事管理、信息工程

    贾珺 男, 博士, 副研究员。主要研究方向: 运筹学

    通讯作者:

    刘冰雁, E-mail: bingyanl@outlook.com

  • 中图分类号: V221+.3;TB553

Autonomous planning of on-orbit evasion path based on Frenet and improved artificial potential field

More Information
  • 摘要:

    在轨道间机动的航天器规避空间目标,需兼顾沿转移轨道飞行的绝对运动和规避空间目标的相对运动,路径自主规划难度较大且目前国内外公开研究成果较少。针对上述问题,提出了一种将Frenet坐标系与改进人工势场相结合的在轨规避路径自主规划方法。首先,构建Frenet坐标系表述空间规避运动,解决了路径规划中航天器与既定转移轨道相对位置不易表述的难题,实现了空间规避运动的简便表示;其次,改进人工势场函数、调整势场作用区域,避免了传统人工势场法存在过早轨迹偏离以及局部震荡现象,实现了对空间目标的自主规避;最后,考虑规避安全、轨道保持、制动时效以及燃料消耗因素构建全局优化函数,能够满足不同任务的需求与偏好,实现了沿转移轨道飞行的最小偏移与快速恢复。算法比对与算例求解表明:所提方法应用优势明显,路径平滑、偏移量小,满足航天器规避空间目标的路径规划需求。

     

  • 图 1  基于Frenet坐标系的航天器空间运动

    Figure 1.  Space motion of spacecraft based on Frenet coordinate system

    图 2  航天器规避机动人工势场示意图

    Figure 2.  Schematic diagram of artificial potential field of spacecraft evasive maneuver

    图 3  屏障规避问题的不同算法求解效果

    Figure 3.  Different algorithms to solve the problem of barrier evasion

    图 4  不同全局优化权重下的航天器机动规避路径

    Figure 4.  Maneuvering evasion path of spacecraft under different global optimization weights

    图 5  不同全局优化权重下的横向偏移加速度

    Figure 5.  Lateral deviation acceleration under different global optimization weights

    图 6  航天器沿最优路径规避空间碎片的局部效果

    Figure 6.  Local effects of spacecraft evading space debris along an optimal path

  • [1] BOMBARDELLI C, ALESSI E M, ROSSI A. Reflectance spec-troscopy characterization of space debris[J]. Advances in Space Research, 2017, 59(10): 2488-2500. doi: 10.1016/j.asr.2017.02.033
    [2] ZHANG B, WANG Z, ZHANG Y. An analytic method of space debris cloud evolution and its collision evaluation for constellation satellites[J]. Advances in Space Research, 2016, 58(6): 903-913. doi: 10.1016/j.asr.2016.03.016
    [3] 苏飞, 刘静, 张耀, 等. 航天器面内机动规避最优脉冲分析[J]. 系统工程与电子技术, 2018, 40(12): 2782-2789. doi: 10.3969/j.issn.1001-506X.2018.12.23

    SU F, LIU J, ZHANG Y, et al. Analysis of optimal impulse for in-plane collision avoidance maneuver[J]. Systems Engineering and Electronics, 2018, 40(12): 2782-2789(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.12.23
    [4] LEE S C, KIM H D, SUK J. Collision avoidance maneuver planning using UA for LEO and UEO satellite maintained in keeping area[J]. International Journal of Aeronautical & Space Sciences, 2012, 13(4): 474-483. http://adsabs.harvard.edu/abs/2012IJASS..13..474L
    [5] 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 38(1): 281-289. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201701025.htm

    YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 281-289(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201701025.htm
    [6] 李学辉. 航天器轨道构型和自主交会对接控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 101-106.

    LI X H. Research on spacecraft orbital configuration and autonomous rendezvous and docking control method[D]. Harbin: Harbin Institute of Technology, 2018: 101-106(in Chinese).
    [7] 缪远明, 潘腾. 规避姿态禁区的航天器姿态机动路径规划[J]. 航天器工程, 2015, 24(4): 33-37. doi: 10.3969/j.issn.1673-8748.2015.04.006

    MIAO Y M, PAN T. Path planning method for space-craft attitude slew to avoid forbidden celestial[J]. Spacecraft Engineering, 2015, 24(4): 33-37(in Chinese). doi: 10.3969/j.issn.1673-8748.2015.04.006
    [8] 高鹏, 罗建军. 航天器规避动态障碍物的自适应人工势函数制导[J]. 中国空间科学技术, 2012, 32(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201205003.htm

    GAO P, LUO J J. Adaptive artificial potential function guidance for dynamic obstacle avoidance of space-craft[J]. Chinese Space Science and Technology, 2012, 32(5): 1-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201205003.htm
    [9] 曾祥鑫. 自由漂浮空间机器人路径规划及控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 36-39.

    ZHEN X X. Research on path planning and control method for free-floating space robot[D]. Harbin: Harbin Institute of Technology, 2018: 36-39(in Chinese).
    [10] HOWARD T, KELLY A. Optimal rough terrain trajectory generation for wheeled mobile robots[J]. The International Journal of Robotics Research, 2007, 26(2): 141-166. doi: 10.1177/0278364906075328
    [11] MONTEMERLO M, BECKER J, BHAT S, et al. Junior: The stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597. doi: 10.1002/rob.20258
    [12] 王沙晶, 陈建业. 基于Frenet坐标系的智能车运动规划研究[J]. 移动电源与车辆, 2019(1): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YDDC201901006.htm

    WANG S J, CHEN J Y. Motion planning of autonomous vehicle based on Frenet coordinate system[J]. Movable Power Station & Vehicle, 2019(1): 22-29(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YDDC201901006.htm
    [13] WERLING M, KAMMEL S, ZIEGLER J, et al. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds[J]. The International Journal of Robotics Research, 2012, 31(3): 346-359. doi: 10.1177/0278364911423042
    [14] 王威, 陈慧岩, 马建昊, 等. 基于Frenet坐标系和控制延时补偿的智能车辆路径跟踪[J]. 兵工学报, 2019, 40(11): 2336-2351. doi: 10.3969/j.issn.1000-1093.2019.11.019

    WANG W, CHEN H Y, MA J H, et al. Path tracking for intelligent vehicles based on Frenet coordinates and delayed control[J]. Acta Armamentarii, 2019, 40(11): 2336-2351(in Chinese). doi: 10.3969/j.issn.1000-1093.2019.11.019
    [15] 龙翔, 高建博, 隗寒冰. 一种自动驾驶汽车系统架构开发与测试验证[J]. 重庆理工大学学报(自然科学), 2019, 33(12): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201912007.htm

    LONG X, GAO J B, WEI H B. Development and test validation of a systematic architecture for autonomous vehicle[J]. Journal of Chongqing University of Technology(Natural Science), 2019, 33(12): 45-54(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201912007.htm
    [16] 熊菁, 程文科, 秦子增. 基于Serret-Frenet坐标系的翼伞系统轨迹跟踪控制[J]. 动力学与控制学报, 2005, 3(2): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK200502016.htm

    XIONG J, CHEN W K, QIN Z Z. Path-following of parafoil system based on Serret-Fremet[J]. Journal of Dynamics and Control, 2005, 3(2): 89-93(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK200502016.htm
    [17] 严永锁. 基于反馈-滑模策略的水面无人艇路径跟踪控制[D]. 哈尔滨: 哈尔滨工程大学, 2019: 58-61.

    YAN Y S. Path tracking control of unmanned surface vehicles based on feedback-sliding mode strategy[D]. Harbin: Harbin Engineering University, 2019: 58-61(in Chinese).
    [18] 赵宁宁, 徐德民, 高剑, 等. 基于Serret-Frenet坐标系的多AUV编队路径跟踪控制[J]. 鱼雷技术, 2015, 23(1): 35-39. doi: 10.3969/j.issn.1673-1948.2015.01.008

    ZHAO N N, XU D M, GAO J, et al. Formation path following control of multiple AUVs based on Serret-Frenet coordinate system[J]. Torpedo Technology, 2015, 23(1): 35-39(in Chinese). doi: 10.3969/j.issn.1673-1948.2015.01.008
    [19] 王华, 韩璐, 楚世理, 等. 基于Frenet标架下三维元胞自动机的航母舰载机集群运动建模[J]. 计算机辅助设计与图形学学报, 2018, 30(9): 1719-1727.

    WANG H, HAN L, CHU S L, et al. Shipboard aircraft swarm modeling using a 3D cellular automata model under the Frenet frame[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(9): 1719-1727(in Chinese).
    [20] 丁家如, 杜昌平, 赵耀, 等. 基于改进人工势场法的无人机路径规划算法[J]. 计算机应用, 2016, 36(1): 287-290. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201601056.htm

    DING J R, DU C P, ZHAO Y, et al. Path planning algorithm for unmanned aerial vehicles based on improved artificial potential field[J]. Journal of Computer Applications, 2016, 36(1): 287-290(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201601056.htm
    [21] 杨丽春, 顾颖彦, 白宇. 基于改进人工势场法的无人机在线航路规划算法[J]. 电子技术应用, 2018, 44(4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY201804001.htm

    YANG L C, GU Y Y, BAI Y. UAV's online route planning algorithm based on improved artificial po-tential field[J]. Application of Electronic Technique, 2018, 44(4): 5-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY201804001.htm
    [22] 何仁珂, 魏瑞轩, 张启瑞, 等. 基于拟态电势能的飞行器航路规划方法[J]. 北京航空航天大学学报, 2016, 42(7): 1543-1549. doi: 10.13700/j.bh.1001-5965.2015.0430

    HE R K, WEI R X, ZHANG Q R, et al. Mimetism electric potential energy motion planning algorithm for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1543-1549(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0430
    [23] LUGO C I, FLORES G, SALAZA R S, et al. Dubins path generation for a fixed wing UAV[C]//International Conference on Unmanned Aircraft Systems(ICUAS). Piscataway: IEEE Press, 2014: 339-346.
    [24] 尚璞. 旋翼无人机路径规划与自主避障控制系统研究[D]. 西安: 西安科技大学, 2019: 89-93.

    SHANG P. Research on path planning arid autono-mous obstacle avoidance control system of quad-rotor[D]. Xi'an: Xi'an University of Science and Technology, 2019: 89-93(in Chinese).
    [25] 张大志, 刘万辉, 缪存孝, 等. 全向移动机器人动态避障方法研究[J]. 北京航空航天大学学报, (2020-07-13)[2020-07-28]. https://doi.org/10.13700/j.bh.1001-5965.2020-0155.

    ZHANG D Z, LIU W H, MIAO C X, et al. Dynamic obstacle avoidance method for omnidirectional mobile robots[J]. Journal of Beijing University of Aeronautics and Astronautics, (2020-07-13)[2020-07-28]. https://doi.org/10.13700/j.bh.1001-5965.2020-0155(in Chinese).
    [26] 贾正荣, 王航宇, 卢发兴. 基于障碍凸化的改进环流APF路径规划[J]. 航空学报, 2019, 40(10): 323189. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201910026.htm

    JIA Z R, WANG H Y, LU F X. Improved circulating APF route planning based on obstacle convexifica-tion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 323189(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201910026.htm
    [27] 陈天德, 黄炎焱, 沈炜. 基于虚拟障碍物法的无震荡航路规划[J]. 兵工学报, 2019, 40(3): 651-658. doi: 10.3969/j.issn.1000-1093.2019.03.025

    CHEN T D, HUANG Y Y, SHEN W. Non-oscillation path planning pased on virtual obstacle method[J]. Acta Armamentarii, 2019, 40(3): 651-658(in Chinese). doi: 10.3969/j.issn.1000-1093.2019.03.025
    [28] MOHANAN M G, SALGOANKA R A. A survey of robotic motion planning in dynamic environments[J]. Robotics & Autonomous Systems, 2018, 100: 171-185. http://www.sciencedirect.com/science/article/pii/S0921889017300313
    [29] 钱宇, 徐敏, 郭东, 等. 航天器短期规避路径规划研究[J]. 飞行力学, 2010, 28(5): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201005018.htm

    QIAN Y, XU M, GUO D, et al. Route planning for spacecraft collision avoidance maneuver with short-term encounters[J]. Flight Dynamics, 2010, 28(5): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201005018.htm
    [30] 于大腾. 航天器反交会规避机动方法研究[D]. 长沙: 国防科学技术大学, 2013: 48-56.

    YU D T. Research on spacecraft anti-rendezvous evasion maneuver method[D]. Changsha: Graduate School of National University of Defense Technology, 2013: 48-56(in Chinese).
    [31] 王沙晶. 基于Frenet坐标系采样的自动驾驶轨迹规划算法研究[D]. 兰州: 兰州理工大学, 2019: 44-48.

    WANG S J. Research of trajectory planning for autonomous driving based frenet coordinate and sampling[D]. Lanzhou: Lanzhou University of Technology, 2019: 44-48(in Chinese).
    [32] JURE B, MARIJAN H, IVAN R, et al. Trajectory planning for autonomous vehicle using digital map[C]//IEEE International Conference on Vehicular Electronics 2019 Zooming Innovation in Consumer Technologies. Piscataway: IEEE Press, 2019: 136-142.
    [33] FASSBENDER D, HEINRICH B C, WUENSCHE H J. Motion planning for autonomous vehicles in highly constrained urban environments[C]//International Conference on Intelligent Robots and Systems (IROS), 2016: 4708-4713.
    [34] WERLING M, ZIEGLER J, SÖREN K, et al. Optimal trajectory generation for dynamic street scenarios in a frenet frame[J]. Robotics & Automation, 2010, 4(5): 5-6. http://ieeexplore.ieee.org/document/5509799/citations?tabFilter=papers
    [35] 张玉. 自动驾驶车辆混合运动规划研究[D]. 北京: 北京理工大学, 2018: 98-104.

    ZHANG Y. Hybrid motion planning for autonomous vehicles[D]. Beijing: Beijing Institute of Technology, 2018: 98-104(in Chinese).
    [36] 王文彬, 秦小林, 张力戈, 等. 基于滚动时域的无人机动态航迹规划[J]. 智能系统学报, 2018, 13(4): 524-533. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201804005.htm

    WANG W B, QIN X L, ZHANG L G, et al. Dynamic UAV trajectory planning based on receding horizon[J]. CAAI Transactions on Intelligent Systems, 2018, 13(4): 524-533(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201804005.htm
    [37] HUANG Z C, WU Q, MA J, et al. An APF and MPC combined collaborative driving controller using vehicular communication technologies[J]. Chaos, Solitons & Fractals, 2016, 89: 232-242. http://www.sciencedirect.com/science/article/pii/S0960077915003689
    [38] 范世鹏, 祁琪, 路坤锋, 等. 基于改进人工势场法的巡航导弹自主避障技术[J]. 北京理工大学学报, 2018, 38(8): 828-834. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201808010.htm

    FAN S P, QI Q, LU K F, et al. Autonomous collision avoidance technique of cruise missiles based on modified artificial potential method[J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 828-834(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201808010.htm
    [39] 张相宇. 特定推力方向约束下的航天器轨道最优控制问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    ZHANG X Y. Research on optimal orbit control of spacecraft with specific thrust direction[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [40] 崔红正, 刘文玲, 唐歌实, 等. 不同推力下的非合作空间目标轨道机动检测[J]. 宇航学报, 2016, 37(3): 253-261. doi: 10.3873/j.issn.1000-1328.2016.03.002

    CUI H Z, LIU W L, TANG G S, et al. Different thrust maneuvers detection of uncooperative space objects[J]. Journal of Astronautics, 2016, 37(3): 253-261(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.03.002
    [41] 张晨, 赵育善. 混合推进最省燃料轨道设计方法[J]. 宇航学报, 2015, 36(8): 869-876. doi: 10.3873/j.issn.1000-1328.2015.08.002

    ZHANG C, ZHAO Y S. A method for hybrid propul-sion minimum fuel trajectory optimization[J]. Journal of Astronautics, 2015, 36(8): 869-876(in Chinese). doi: 10.3873/j.issn.1000-1328.2015.08.002
    [42] 周婷. 空间交会接近段联合机动及燃料优化问题研究[D]. 北京: 清华大学, 2010: 88-93.

    ZHOU T. Study on joint maneuver and fuel optimization in approach phase for space rendezvous[D]. Beijing: Tsinghua University, 2010: 88-93(in Chinese).
    [43] TAKAHASHI A, HONGO T, NINOMIYA Y, et al. Local path planning and motion control for AGV in positioning[C]//Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots & Systems. Piscataway: IEEE Press, 1989: 392-397.
    [44] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
    [45] 吴红波, 王英杰, 杨肖肖. 基于Dijkstra算法优化的城市交通路径分析[J]. 北京交通大学学报, 2019, 43(4): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201904016.htm

    WU H B, WANG Y J, YANG X X. Analysis of urban traffic vehicle routing based on Dijkstra algorithm optimization[J]. Journal of Beijing Jiaotong University, 2019, 43(4): 116-121(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201904016.htm
    [46] 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3): 322493. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201903041.htm

    ZHANG J, HE Y N, PENG Y, et al. Neural network and artificial potential field based cooperative and adversarially path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322493(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201903041.htm
  • 加载中
图(6)
计量
  • 文章访问数:  971
  • HTML全文浏览量:  270
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 录用日期:  2020-08-07
  • 网络出版日期:  2021-04-20

目录

    /

    返回文章
    返回
    常见问答