-
摘要:
倾转旋翼机由于需要兼顾垂直起降和高速平飞2种典型工况下的动力需求,采用大直径旋翼作为推进装置会使机翼大部分处于旋翼滑流区内,这与常规螺旋桨飞机存在较大差异。为评估不同数值计算方法并研究旋翼滑流对倾转旋翼机气动特性的影响,针对选取两叶旋翼的某倾转旋翼机方案,利用激励盘模型、多参考系(MRF)模型、滑移网格模型分别进行了巡航状态下旋翼滑流对全机气动特性影响的数值模拟研究。结果表明:相对于无滑流状态,滑流定常影响使全机阻力增大,最大升阻比降低了7.5%,尾翼产生的升力增大,纵向静稳定度增加了17.1%,全机低头力矩增大;当迎角较小时,滑流虽然改变了机翼表面的升力分布,但是全机升力变化不大;滑流非定常影响会使全机气动特性产生周期性波动,升力系数波动幅度为9.0%,阻力系数波动幅度为10.8%,并且随着迎角的增大,波动幅度也越大。
Abstract:The tiltrotor aircraft needs to take into account the power requirements of vertical takeoff and landing and high-speed level flight, and using large diameter rotor as the propulsion device will make most of the wing in the rotor slipstream area, which is different from the conventional propeller aircraft. In order to evaluate different numerical methods and study the effect of rotor slipstream on the aerodynamic characteristics of a tiltrotor aircraft with two-blade rotor in cruise mode, the actuator disk model, the Multiple Reference Frame (MRF) model and the sliding mesh model are used respectively for numerical simulation study. The results show that, compared with no slipstream, the steady effect of slipstream increases the drag of the whole aircraft, and the maximum lift-drag ratio decreases by 7.5%. The lift generated by the tail wing is increased. The longitudinal static stability is increased by 17.1% and the pitch down moment of the whole aircraft is increased. When the angle of attack is small, although the slipstream changes the lift distribution on the wing surface, the lift of the whole aircraft does not change much. The unsteady influence of the slipstream causes periodic fluctuation of the aerodynamic characteristics of the aircraft. The fluctuation range of lift coefficient and drag coefficient are 9.0% and 10.8% respectively. With the increase of the angle of attack, the fluctuation range also increases.
-
参数 数值或翼型 旋翼半径/m 0.914 桨毂半径/m 0.229 旋翼翼型 NACA0012 旋翼弦长/m 0.1 旋翼桨距/(°) 11 旋翼片数 2 转速n/(r·min-1) 1 167 表 2 倾转旋翼机参数
Table 2. Parameters of tiltrotor aircraft
参数 数值 机翼翼展/m 3.5 机翼面积/m2 1.18 机翼安装角/(°) 3 巡航高度/km 4 平均气动弦长/m 0.33 飞行速度/(km·h-1) 150 旋翼转速n/(r·min-1) 1 500 旋翼直径/m 1.5 表 3 不同迎角下Point 1与Point 2的动压监测值
Table 3. Dynamic pressure of Point 1 and Point 2 at different angles of attack
α/(°) qU1/Pa qP1/Pa Δ1/% qU2/Pa qP2/Pa Δ2/% 0 674.6 689.6 2.22 699.8 739.5 5.67 3 620.4 650.6 4.87 700.9 762.4 8.77 6 562.8 600.9 6.77 702.8 789.8 12.38 9 580.6 630.6 8.61 705.4 817 15.82 表 4 三种数值方法评估
Table 4. Evaluation of three numerical methods
方法 旋翼模型 网格量 计算时间 精度 适用范围 激励盘 虚拟 少 短 低 定常 MRF 真实 多 中 中 定常 滑移网格 真实 多 长 高 非定常 -
[1] MAISEL M D, GIULIANETTI D J, DUGAN D C. The history of the XV-15 rotor research aircraft: From concept to flight: NASA SP-2000-4517[R]. Washington, D.C. : NASA, 2000. [2] MATOS C, REDDY U, KOMERATH N. Rotor wake/fixed wing interactions with flap deflection[C]//55th American Helicopter Society Annual Forum, 1999: 1-12. [3] JOHNSON W. Airloads and wake geometry calculations for an isolated tiltrotor model in a wind tunnel[C]//27th European Rotorcraft Forum, 2001: 20030063077. [4] 张铮, 陈仁良. 倾转旋翼机/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201703002.htmZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 31-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201703002.htm [5] 招启军, 倪同兵, 李鹏, 等. 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33(12): 2900-2912. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812010.htmZHAO Q J, NI T B, LI P, et al. Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33(12): 2900-2912(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812010.htm [6] 李鹏. 倾转旋翼机非定常气动特性分析及气动设计研究[D]. 南京: 南京航空航天大学, 2015: 39-42.LI P. Researches on aerodynamic design and analyses on unsteady aerodynamic characteristics of the tiltrotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 38-42(in Chinese). [7] STRASH D, LEDNICER D, RUBIN T. Analysis of propeller-induced aerodynamic effects: AIAA-98-2414[R]. Reston: AIAA, 1998. [8] VELDHUIS L, NEBIOLO S. Analysis of calculated and measured wake characteristics of a propeller-wing model[C/OL]//38th Aerospace Sciences Meeting and Exhibit, 2000(2012-08-22)[2020-05-01]. https://doi.org/10.2514/6.2000-908. [9] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4): 845-852. doi: 10.3321/j.issn:1000-6893.2008.04.013LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 845-852(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.04.013 [10] 赵寅宇, 黎鑫, 史勇杰, 等. 双拉力螺旋桨构型复合式高速直升机旋翼/螺旋桨干扰流场分析[J]. 南京航空航天大学学报, 2017, 49(2): 154-164. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201702002.htmZHAO Y Y, LI X, SHI Y J, et al. Analysis on rotor-propellers interaction flowfield for compound double-thust-propeller high-speed helicopters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(2): 154-164(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201702002.htm [11] 夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安: 西北工业大学, 2015: 57-72.XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an: Northwestern Polytechnical University, 2015: 57-72(in Chinese). [12] 杨小川, 李伟, 王运涛, 等. 一种分布式螺旋桨运输机方案及其滑流效应研究[J]. 西北工业大学学报, 2019, 37(2): 361-368. doi: 10.3969/j.issn.1000-2758.2019.02.020YANG X C, LI W, WANG Y T, et al. Research on aerodynamic shape design scheme of a distributed propeller transport aircraft and its slipstream effect[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 361-368(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.02.020 [13] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4): 554-562. doi: 10.7638/kqdlxxb-2014.0013CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4): 554-562(in Chinese). doi: 10.7638/kqdlxxb-2014.0013 [14] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9): 2669-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609005.htmWANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2669-2678(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609005.htm [15] 张小莉, 张一帆. 螺旋桨滑流对增升装置气动特性影响研究[J]. 航空计算技术, 2011, 41(4): 1-3. doi: 10.3969/j.issn.1671-654X.2011.04.001ZHANG X L, ZHANG Y F. Research on interaction of propeller and high-lift system[J]. Aeronautical Computing Technique, 2011, 41(4): 1-3(in Chinese). doi: 10.3969/j.issn.1671-654X.2011.04.001 [16] 任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟[J]. 空气动力学学报, 2017, 35(3): 383-391. doi: 10.7638/kqdlxxb-2017.0006REN X F, DUAN Z Y, WEI J L. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamica Sinica, 2017, 35(3): 383-391(in Chinese). doi: 10.7638/kqdlxxb-2017.0006 [17] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411002.htmXU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411002.htm [18] 付炜嘉, 李杰, 娄琪琳. 基于动态面搭接技术的直升机旋翼流场分析[J]. 应用力学学报, 2014, 31(3): 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403002.htmFU W J, LI J, LOU Q L. Transient response characteristic of magnetic fluid saturated poroelastic medium[J]. Chinese Journal of Applied Mechanics, 2014, 31(3): 311-316(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403002.htm [19] 赵帅, 段卓毅, 李杰, 等. 涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J]. 航空学报, 2019, 40(4): 163-174. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201904015.htmZHAO S, DUAN Z Y, LI J, et al. Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 163-174(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201904015.htm [20] ROOSENBOOM E W M, STVRMER A, SCHRÖDER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1): 284-291. doi: 10.2514/1.45961 [21] RAI M M. A relaxation approach to patched-grid calculations with Euler equations: AIAA-85-0295[R]. Reston: AIAA, 1985. [22] MCKEE J W, NAESETH R L. Experimental investigation of the drag of flat plates and cylinders in the slipstream of a hovering rotor: NACA TN 4239[R]. Washington, D.C. : NACA, 1958. [23] 孙俊磊, 王和平, 周洲, 等. 螺旋桨滑流对菱形翼布局无人机气动的影响[J]. 航空学报, 2018, 39(1): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201801012.htmSUN J L, WANG H P, ZHOU Z, et al. Effects of propeller slipstream on aerodynamic performance of diamond joined-wing configuration UAV[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 141-154(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201801012.htm