留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DLatLRR与VGG Net的红外与可见光图像融合

沈瑜 陈小朋

沈瑜, 陈小朋. 基于DLatLRR与VGG Net的红外与可见光图像融合[J]. 北京航空航天大学学报, 2021, 47(6): 1105-1114. doi: 10.13700/j.bh.1001-5965.2020.0178
引用本文: 沈瑜, 陈小朋. 基于DLatLRR与VGG Net的红外与可见光图像融合[J]. 北京航空航天大学学报, 2021, 47(6): 1105-1114. doi: 10.13700/j.bh.1001-5965.2020.0178
SHEN Yu, CHEN Xiaopeng. Infrared and visible image fusion based on latent low-rank representation decomposition and VGG Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1105-1114. doi: 10.13700/j.bh.1001-5965.2020.0178(in Chinese)
Citation: SHEN Yu, CHEN Xiaopeng. Infrared and visible image fusion based on latent low-rank representation decomposition and VGG Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1105-1114. doi: 10.13700/j.bh.1001-5965.2020.0178(in Chinese)

基于DLatLRR与VGG Net的红外与可见光图像融合

doi: 10.13700/j.bh.1001-5965.2020.0178
基金项目: 

国家自然科学基金 61861025

国家自然科学基金 61562057

国家自然科学基金 61761027

国家自然科学基金 51669010

长江学者和创新团队发展计划 IRT_16R36

光电技术与智能控制教育部重点实验室(兰州交通大学)开放课题 KFKT2018-9

兰州市人才创新创业项目 2018-RC-117

甘肃省教育厅高等学校科研项目 216130

兰州交通大学青年基金 2015005

详细信息
    通讯作者:

    沈瑜. E-mail: 18609311366@163.com

  • 中图分类号: TP391

Infrared and visible image fusion based on latent low-rank representation decomposition and VGG Net

Funds: 

National Natural Science Foundation of China 61861025

National Natural Science Foundation of China 61562057

National Natural Science Foundation of China 61761027

National Natural Science Foundation of China 51669010

Program for Changjiang Scholars and Innovative Research Team in University IRT_16R36

Key Laboratory of Opt-electronic Technology and Intelligent Control of Ministry of Education (Lanzhou Jiaotong University) Open Object KFKT2018-9

Lanzhou Talent Innovation and Entrepreneurship Project 2018-RC-117

Research Project of Institutions of Higher Learning of Education Department of Gansu Province 216130

Lanzhou Jiaotong University Youth Fund 2015005

More Information
  • 摘要:

    针对红外与可见光图像融合中特征损失严重、显著目标不突出的问题,提出了一种低秩表示分解与深度神经网络相结合的图像融合算法。首先,对源图像进行潜在低秩表示分解(DLatLRR),得到相应的低秩部分、显著部分及稀疏噪声。然后,分别采用16层的VGG Net模型和联合特征加权算法对低秩部分与显著部分进行融合,舍弃二者的稀疏噪声。最后,对融合得到的低秩部分和显著部分进行图像重建,得到最终的融合图像。实验结果表明:与其他算法进行比较,所提算法能够对图像的深层次细节特征进行融合,突出场景中的感兴趣区域,且融合图像的相关差异和、结构相似性、线性相关度等多种客观指标均有所提升,提升最大值分别为0.73、0.15、0.11,噪声产生率的最大缩减值为0.041 2。

     

  • 图 1  DLatLRR处理结果

    Figure 1.  DLatLRR results

    图 2  本文算法流程

    Figure 2.  Proposed algorithm flowchart

    图 3  联合特征权重图获取流程

    Figure 3.  Joint feature weighting map acquisition process

    图 4  源图像、显著图及灰度直方图

    Figure 4.  Source image, saliency map and gray histogram

    图 5  显著部分、能量图及灰度直方图

    Figure 5.  Saliency part, energy map and gray histogram

    图 6  图像融合

    Figure 6.  Image fusion

    图 7  客观评价指标

    Figure 7.  Objective evaluation index

    表  1  VGG 16结构参数

    Table  1.   VGG 16 structure parameters

    卷积组 卷积 通道数 池化 输出
    1(1_1, 1_2) 3×3, 1 64 Max, 2×2 N×N
    2(2_1, 2_2) 3×3, 1 128 Max, 2×2 N/2×N/2
    3(3_1, 3_2) 3×3, 1 256 Max, 2×2 N/4×N/4
    4(4_1, 4_2, 4_3) 3×3, 1 512 Max, 2×2 N/8×N/8
    5(5_1, 5_2, 5_3) 3×3, 1 512 Max, 2×2 N/16×N/16
    下载: 导出CSV
  • [1] JIN X, JIANG Q, YAO S W, et al. A survey of infrared and visual image fusion methods[J]. Infrared Physics & Technology, 2017, 85: 478-501. http://www.sciencedirect.com/science/article/pii/S135044951730052X
    [2] MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2018, 45: 153-178. http://www.sciencedirect.com/science/article/pii/S1566253517307972
    [3] LI S T, KANG X D, FANG L Y, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2016, 33: 100-112. http://www.sciencedirect.com/science/article/pii/S1566253516300458
    [4] KUMAR B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204. doi: 10.1007/s11760-013-0556-9
    [5] LI S T, KANG X D, HU J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. doi: 10.1109/TIP.2013.2244222
    [6] 蔡怀宇, 卓励然, 朱攀, 等. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合[J]. 光子学报, 2018, 47(6): 0610002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201806027.htm

    CAI H Y, ZHUO L R, ZHU P, et al. Fusion of infrared and visible images based on non-subsampled contourlet transform and intuitionistic fuzzy set[J]. Acta Photonica Sinica, 2018, 47(6): 0610002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201806027.htm
    [7] 江泽涛, 吴辉, 周哓玲. 基于改进引导滤波和双通道脉冲发放皮层模型的红外与可见光图像融合算法[J]. 光学学报, 2018, 38(2): 0210002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201802015.htm

    JIANG Z T, WU H, ZHOU X L. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J]. Acta Optica Sinica, 2018, 38(2): 0210002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201802015.htm
    [8] 邓辉, 王长龙, 胡永江, 等. 基于非下采样双树复轮廓波与自适应分块的红外与可见光图像融合[J]. 光子学报, 2019, 48(7): 0710006. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201907015.htm

    DENG H, WANG C L, HU Y J, et al. Fusion of infrared and visible images based on non-subsampled duak tree complex contourlet and adaptive block[J]. Acta Photonica Sinica, 2019, 48(7): 0710006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201907015.htm
    [9] 吴冬鹏, 毕笃彦, 何林远, 等. 基于NSSCT的红外与可见光图像融合[J]. 光学学报, 2017, 37(7): 0710003. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201707013.htm

    WU D P, BI D Y, HE L Y, et al. A fusion algorithm of infrared and visible image based on NSSCT[J]. Acta Optica Sinica, 2017, 37(7): 0710003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201707013.htm
    [10] LIU Y, CHEN X, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886. doi: 10.1109/LSP.2016.2618776
    [11] ZHANG Q, FU Y, LI H, et al. Dictionary learning method for joint sparse representation-based image fusion[J]. Optical Engineering, 2013, 52(5): 057006. doi: 10.1117/1.OE.52.5.057006
    [12] LIU C H, QI Y, DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017, 83: 94-102. http://www.sciencedirect.com/science/article/pii/S1350449516307150
    [13] LIU Y, CHEN X, WANG Z F, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158-173. doi: 10.1016/j.inffus.2017.10.007
    [14] LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. doi: 10.1142/S0219691318500182
    [15] LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. doi: 10.1109/TIP.2018.2887342
    [16] LIU G C, LIN Z C, YU Y. Robust subspace segmentation by low-rank representation[C]//Proceedings of the 27th International Conference on Machine Learning, 2010: 663-670.
    [17] LIU G C, YAN S C. Latent low-rank representation for subspace segmentation and feature extraction[C]//IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 1615-1622.
    [18] KAREN S, ANDREW Z. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations, 2015, 5(3): 345-358.
    [19] MA J L, ZHOU Z Q, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17. http://www.sciencedirect.com/science/article/pii/S1350449516305928
    [20] SRIVASTAVA R, PRAKASH O, KHARE A. Local energy-based multimodal medical image fusion in curvelet domain[J]. IET Computer Vision, 2016, 10(6): 513-527. doi: 10.1049/iet-cvi.2015.0251
    [21] WANG Z, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84. doi: 10.1109/97.995823
    [22] ASLANTAS V, BENDES E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. International Journal of Electronics and Communications, 2015, 69(12): 1890-1896. doi: 10.1016/j.aeue.2015.09.004
    [23] KUMAR B K S. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform[J]. Signal, Image and Video Processing, 2013, 7(6): 1125-1143. doi: 10.1007/s11760-012-0361-x
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  101
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-06-19
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答