留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S弯进气道出口旋流对轴流压气机性能的影响

王加乐 程邦勤 费晓文 尉洋 冯路宁

王加乐, 程邦勤, 费晓文, 等 . S弯进气道出口旋流对轴流压气机性能的影响[J]. 北京航空航天大学学报, 2021, 47(7): 1438-1445. doi: 10.13700/j.bh.1001-5965.2020.0190
引用本文: 王加乐, 程邦勤, 费晓文, 等 . S弯进气道出口旋流对轴流压气机性能的影响[J]. 北京航空航天大学学报, 2021, 47(7): 1438-1445. doi: 10.13700/j.bh.1001-5965.2020.0190
WANG Jiale, CHENG Bangqin, FEI Xiaowen, et al. Effects of swirl at outlet of S-shaped inlet on axial flow compressor performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1438-1445. doi: 10.13700/j.bh.1001-5965.2020.0190(in Chinese)
Citation: WANG Jiale, CHENG Bangqin, FEI Xiaowen, et al. Effects of swirl at outlet of S-shaped inlet on axial flow compressor performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1438-1445. doi: 10.13700/j.bh.1001-5965.2020.0190(in Chinese)

S弯进气道出口旋流对轴流压气机性能的影响

doi: 10.13700/j.bh.1001-5965.2020.0190
详细信息
    通讯作者:

    程邦勤. E-mail: 1695438620@qq.com

  • 中图分类号: V231.3

Effects of swirl at outlet of S-shaped inlet on axial flow compressor performance

More Information
  • 摘要:

    为探究S弯进气道出口旋流对轴流压气机性能的影响,优化设计了旋流畸变网以模拟旋流,利用数值模拟的方法探究了单级轴流压气机在S弯进气道出口旋流作用下的气动响应,获得均匀进气条件和旋流进气条件下的压气机特性线和流场分布。结果表明:优化后的旋流畸变网总体旋流角误差降低了。S弯进气道出口旋流对增压能力影响不大,但会导致压气机效率下降,稳定工作范围减小。在100%和80%换算转速,压气机的压比最大降幅分别为0.12%和0.28%,在峰值效率点附近的效率最大降幅为3.2%和14.4%。S弯进气道出口旋流中的反向旋流区增大了转子叶片进气攻角,导致气流叶背分离、叶片通道堵塞,最终导致压气机失稳。

     

  • 图 1  目标旋流场[16]

    Figure 1.  Target swirl flow field[16]

    图 2  旋流网

    Figure 2.  Swirl network

    图 3  压气机实验系统[17]

    Figure 3.  Compressor experiment system [17]

    图 4  计算域

    Figure 4.  Computational domain

    图 5  50%叶高处网格

    Figure 5.  Mesh at 50% span of compressor

    图 6  不同网格计算的压气机特性对比

    Figure 6.  Comparison of compressor characteristics calculated by different grids

    图 7  全通道网格

    Figure 7.  Whole-passage mesh

    图 8  旋流网下游各截面旋流角云图

    Figure 8.  Swirl angle contour on each section downstream of swirl network

    图 9  压气机进口截面速度矢量场与旋流角云图

    Figure 9.  Velocity vector field and swirl angle contour of compressor inlet section

    图 10  测环示意图及测环上旋流角分布

    Figure 10.  Schematic of measuring ring and distribution of swirl angle on measuring ring

    图 11  S弯旋流对压气机性能的影响

    Figure 11.  Effect of S-shaped swirl on compressor performance

    图 12  S弯进气道各叶高处相对马赫数云图

    Figure 12.  Relative Mach number contour on each section with S-shaped inlet

    图 13  旋流发展趋势及叶顶区域流线

    Figure 13.  Development trend of swirl and streamlines of blade tip area

    图 14  失速点5%叶高截面相对马赫数云图

    Figure 14.  Relative Mach number contour on span 5% near stall point

    表  1  低速轴流压气机几何参数

    Table  1.   Geometric parameters of low-speed axial flow compressor

    参数 转子 静子
    叶片数目 45 60
    弦长/mm 53.6 40
    稠度 1.28 1.27
    展弦比 1.87 2.5
    叶顶间隙/mm 1.2 1.2
    下载: 导出CSV

    表  2  低速轴流压气机设计点性能参数

    Table  2.   Designed point performance parameters of low-speed axial flow compressor

    参数 数值
    流量/(kg·s-1) 6.5
    转速/(r·min-1) 3 000
    压比 1.025
    下载: 导出CSV

    表  3  不同网格类型的网格数量

    Table  3.   Number of grids for different grid types

    网格类型 单通道网格数量/104
    粗网格 33.9
    中网格 60.3
    细网格 91.8
    下载: 导出CSV
  • [1] 王如根, 高坤华. 航空发动机新技术[M]. 北京: 航空工业出版社, 2003.

    WANG R G, GAO K H. New technology of aeronautical engine[M]. Beijing: Aviation Industry Press, 2003(in Chinese).
    [2] STOCKS C P, BISSINGER N C. The design and development of the tornado engine air intake: CP-301-1981[R]. [S. l. ]: AGARD Aerodynamics of Power Plant Installation, 1981.
    [3] LUDWIG G. Tomahawk engine/inlet compatibility study for f107-wr-400/402 engines[C]//Williams International Report, 1989.
    [4] 姜健, 于芳芳, 赵海刚, 等. 进气道/发动机相容性评价体系的完善与发展[J]. 科学技术与工程, 2009, 9(21): 6474-6483. doi: 10.3969/j.issn.1671-1815.2009.21.041

    JIANG J, YU F F, ZHAO H G, et al. Perfection and development of engine/intake compatibility evaluate criterion[J]. Science Technology and Engineering, 2009, 9(21): 6474-6483(in Chinese). doi: 10.3969/j.issn.1671-1815.2009.21.041
    [5] SHEORAN Y, BRUCE B P, KRISHNAN M. Compressor performance and operability in swirl distortion[J]. Journal of Turbomachinery, 2012, 134(4): 1-13. http://www.researchgate.net/publication/267502069_Compressor_Performance_and_Operability_in_Swirl_Distortion
    [6] SHEORAN Y, BRUCE B P, KRISHNAN M. Advancements in the design of an adaptable swirl distortion generator for testing gas turbine engines[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando: ASME, 2010: 23-32.
    [7] GOVARDHAN M, VISWANATH K. Investigations on an Axial flow fan stage subjected to circumferential inlet flow distortion and swirl[J]. Journal of Thermal Science, 1997, 6(4): 241-250. doi: 10.1007/s11630-997-0003-8
    [8] NASERI A M. BOROOMAND M, TOUSI A M. The effect of inlet flow distortion on performance of a MicroJet engine: Part 1-Development of an inlet simulator[C]//Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2012: 317-324.
    [9] NASERI A M, BOROOMAND A M, TOUSI A M, et al. The effect of inlet flow distortion on performance of a micro-jet engine: Part 2-Engine tests[C]//Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2012: 311-316.
    [10] AREND D J, CASTNER R S, FRATE F C. Low cost, compact and versatile rig for integrated inlet and propulsion systems research[C]//44th AIAA Aerospace Science Meeting and Exhibit. Reston: AIAA, 2006: 1313.
    [11] 徐诸霖, 达兴亚, 吴军强. 基于体积力模型的大S弯进气道与风扇耦合计算研究[J]. 推进技术, 2019, 40(7): 1441-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201907002.htm

    XU Z L, DA X Y, WU J Q. Computational study on S-shaped inlet and fan coupling based on body force model[J]. Journal of Propulsion Technology, 2019, 40(7): 1441-1448(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201907002.htm
    [12] 徐诸霖, 达兴亚, 范兆林. 基于五孔探针的大S弯进气道旋流畸变评估[J]. 航空学报, 2017, 38(12): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201712005.htm

    XU Z L, DA X Y, FAN Z L. Assessment of swirl distortion of serpentine inlet based on five-hole probe[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 48-57(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201712005.htm
    [13] PARDO A C, MEHDI A, PACHIDIS V, et al. Numerical study of the effect of multiple tightly-wound vortices on a transonic fan stage performance[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Orlando: ASME, 2014.
    [14] 王加乐, 程邦勤, 张磊, 等. 特定涡旋流畸变对跨声速压气机性能的影响[J]. 航空动力学报, 2020, 35(3): 540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202003010.htm

    WANG J L, CHENG B Q, ZHANG L, et al. Effects of specific swirl distortion on performance of transonic compressor[J]. Journal of Aerospace Power, 2020, 35(3): 540-551(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202003010.htm
    [15] 刘雷, 宋彦萍, 陈焕龙, 等. S弯进气道优化对其内流场及性能影响研究[J]. 工程热物理学报, 2015, 138(2): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201501011.htm

    LIU L, SONG Y P, CHEN H L, et al. Investigation on effect of S-shaped inlet optimization to internal flow characteristic and aerodynamic performance[J]. Journal of Engineering Thermophysics, 2015, 138(2): 50-54(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201501011.htm
    [16] 张磊, 程邦勤, 王加乐, 等. 新型旋流畸变网的设计与仿真研究[J]. 推进技术, 2018, 39(9): 2110-2120. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201809024.htm

    ZHANG L, CHENG B Q, WANG J L, et al. Design and numerical simulation of a new swirl distortion screen[J]. Journal of Propulsion Technology, 2018, 39(9): 2110-2120(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201809024.htm
    [17] 宋国兴, 李军, 周游天, 等. 轴流压气机进气旋流畸变实验与仿真研究[J]. 风机技术, 2017, 59(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FENG201705001.htm

    SONG G X, LI J, ZHOU Y T, et al. The experiment and simulation of inlet swirl distortion for axial compressor[J]. Chinese Journal of Turbomachinery, 2017, 59(5): 1-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FENG201705001.htm
    [18] Society of Automotive Engineers. A method for assessing inlet swirl distortion: AIR 5686[R]. Warrendale: SAE, 2010.
    [19] 胡伟波, 程邦勤, 陈志敏, 等. 整体涡旋流畸变对压气机性能影响的研究[J]. 推进技术, 2015, 36(9): 1324-1330. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509007.htm

    HU W B, CHENG B Q, CHEN Z M, et al. Investigation on effects of bulk swirl distortion on compressor performance[J]. Journal of Propulsion Technology, 2015, 36(9): 1324-1330(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509007.htm
    [20] 程邦勤, 纪振伟, 胡伟波, 等. 对涡旋流畸变对单级跨声速压气机性能影响的数值研究[J]. 推进技术, 2017, 38(8): 1776-1786.

    CHENG B Q, JI Z W, HU W B, et al. Effects of paired swirl distortion on single stage transonic compressor performance using numerical simulation[J]. Journal of Propulsion Technology, 2017, 38(8): 1776-1786(in Chinese).
    [21] 胡伟波, 程邦勤, 陈志敏, 等. 应用改进的平行压气机模型预测旋流畸变对压气机性能的影响[J]. 推进技术, 2016, 37(8): 1485-1489. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608011.htm

    HU W B, CHENG B Q, CHEN Z M, et al. Prognostication for effects of swirl distortion on compressor performance with modified parallel compressor model[J]. Journal of Propulsion Technology, 2016, 37(8): 1485-1489(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608011.htm
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  131
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-15
  • 录用日期:  2020-07-10
  • 网络出版日期:  2021-07-20

目录

    /

    返回文章
    返回
    常见问答