-
摘要:
为探究S弯进气道出口旋流对轴流压气机性能的影响,优化设计了旋流畸变网以模拟旋流,利用数值模拟的方法探究了单级轴流压气机在S弯进气道出口旋流作用下的气动响应,获得均匀进气条件和旋流进气条件下的压气机特性线和流场分布。结果表明:优化后的旋流畸变网总体旋流角误差降低了。S弯进气道出口旋流对增压能力影响不大,但会导致压气机效率下降,稳定工作范围减小。在100%和80%换算转速,压气机的压比最大降幅分别为0.12%和0.28%,在峰值效率点附近的效率最大降幅为3.2%和14.4%。S弯进气道出口旋流中的反向旋流区增大了转子叶片进气攻角,导致气流叶背分离、叶片通道堵塞,最终导致压气机失稳。
Abstract:In order to estimate the effects of swirl at outlet of S-shaped inlet on the performance of axial flow compressor, a swirl distortion network was optimized and designed to simulate the swirl flow field. The aerodynamic response of the single-stage axial flow compressor under the effect of the swirl at the outlet of the S-shaped inlet was investigated by numerical simulation. The characteristic map and flow field distributions of the compressor under the condition of uniform intake and swirling intake were obtained. The results show that the overall swirl angle error of the optimized swirl distortion network is reduced. The swirl flow at the outlet of S-shaped inlet has little influence on the pressurization ability, but it will lead to the decrease of compressor efficiency and decrease of stability. At the corrected speed of 100% and 80%, the maximum reduction of pressure ratio is 0.12% and 0.28% respectively, and the maximum reduction of efficiency near the peak efficiency point is 3.2% and 14.4% respectively. The reverse swirl zone in the swirl at the outlet of the S-shaped inlet increases the inlet attack angle of the rotor blade, resulting in the separation of airflow at the suction side and the blockage of the blade passage, which eventually leads to the instability of the compressor.
-
Key words:
- S-shaped inlet /
- swirl distortion /
- compressor /
- performance /
- stability
-
表 1 低速轴流压气机几何参数
Table 1. Geometric parameters of low-speed axial flow compressor
参数 转子 静子 叶片数目 45 60 弦长/mm 53.6 40 稠度 1.28 1.27 展弦比 1.87 2.5 叶顶间隙/mm 1.2 1.2 表 2 低速轴流压气机设计点性能参数
Table 2. Designed point performance parameters of low-speed axial flow compressor
参数 数值 流量/(kg·s-1) 6.5 转速/(r·min-1) 3 000 压比 1.025 表 3 不同网格类型的网格数量
Table 3. Number of grids for different grid types
网格类型 单通道网格数量/104 粗网格 33.9 中网格 60.3 细网格 91.8 -
[1] 王如根, 高坤华. 航空发动机新技术[M]. 北京: 航空工业出版社, 2003.WANG R G, GAO K H. New technology of aeronautical engine[M]. Beijing: Aviation Industry Press, 2003(in Chinese). [2] STOCKS C P, BISSINGER N C. The design and development of the tornado engine air intake: CP-301-1981[R]. [S. l. ]: AGARD Aerodynamics of Power Plant Installation, 1981. [3] LUDWIG G. Tomahawk engine/inlet compatibility study for f107-wr-400/402 engines[C]//Williams International Report, 1989. [4] 姜健, 于芳芳, 赵海刚, 等. 进气道/发动机相容性评价体系的完善与发展[J]. 科学技术与工程, 2009, 9(21): 6474-6483. doi: 10.3969/j.issn.1671-1815.2009.21.041JIANG J, YU F F, ZHAO H G, et al. Perfection and development of engine/intake compatibility evaluate criterion[J]. Science Technology and Engineering, 2009, 9(21): 6474-6483(in Chinese). doi: 10.3969/j.issn.1671-1815.2009.21.041 [5] SHEORAN Y, BRUCE B P, KRISHNAN M. Compressor performance and operability in swirl distortion[J]. Journal of Turbomachinery, 2012, 134(4): 1-13. http://www.researchgate.net/publication/267502069_Compressor_Performance_and_Operability_in_Swirl_Distortion [6] SHEORAN Y, BRUCE B P, KRISHNAN M. Advancements in the design of an adaptable swirl distortion generator for testing gas turbine engines[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando: ASME, 2010: 23-32. [7] GOVARDHAN M, VISWANATH K. Investigations on an Axial flow fan stage subjected to circumferential inlet flow distortion and swirl[J]. Journal of Thermal Science, 1997, 6(4): 241-250. doi: 10.1007/s11630-997-0003-8 [8] NASERI A M. BOROOMAND M, TOUSI A M. The effect of inlet flow distortion on performance of a MicroJet engine: Part 1-Development of an inlet simulator[C]//Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2012: 317-324. [9] NASERI A M, BOROOMAND A M, TOUSI A M, et al. The effect of inlet flow distortion on performance of a micro-jet engine: Part 2-Engine tests[C]//Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2012: 311-316. [10] AREND D J, CASTNER R S, FRATE F C. Low cost, compact and versatile rig for integrated inlet and propulsion systems research[C]//44th AIAA Aerospace Science Meeting and Exhibit. Reston: AIAA, 2006: 1313. [11] 徐诸霖, 达兴亚, 吴军强. 基于体积力模型的大S弯进气道与风扇耦合计算研究[J]. 推进技术, 2019, 40(7): 1441-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201907002.htmXU Z L, DA X Y, WU J Q. Computational study on S-shaped inlet and fan coupling based on body force model[J]. Journal of Propulsion Technology, 2019, 40(7): 1441-1448(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201907002.htm [12] 徐诸霖, 达兴亚, 范兆林. 基于五孔探针的大S弯进气道旋流畸变评估[J]. 航空学报, 2017, 38(12): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201712005.htmXU Z L, DA X Y, FAN Z L. Assessment of swirl distortion of serpentine inlet based on five-hole probe[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 48-57(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201712005.htm [13] PARDO A C, MEHDI A, PACHIDIS V, et al. Numerical study of the effect of multiple tightly-wound vortices on a transonic fan stage performance[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Orlando: ASME, 2014. [14] 王加乐, 程邦勤, 张磊, 等. 特定涡旋流畸变对跨声速压气机性能的影响[J]. 航空动力学报, 2020, 35(3): 540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202003010.htmWANG J L, CHENG B Q, ZHANG L, et al. Effects of specific swirl distortion on performance of transonic compressor[J]. Journal of Aerospace Power, 2020, 35(3): 540-551(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202003010.htm [15] 刘雷, 宋彦萍, 陈焕龙, 等. S弯进气道优化对其内流场及性能影响研究[J]. 工程热物理学报, 2015, 138(2): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201501011.htmLIU L, SONG Y P, CHEN H L, et al. Investigation on effect of S-shaped inlet optimization to internal flow characteristic and aerodynamic performance[J]. Journal of Engineering Thermophysics, 2015, 138(2): 50-54(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201501011.htm [16] 张磊, 程邦勤, 王加乐, 等. 新型旋流畸变网的设计与仿真研究[J]. 推进技术, 2018, 39(9): 2110-2120. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201809024.htmZHANG L, CHENG B Q, WANG J L, et al. Design and numerical simulation of a new swirl distortion screen[J]. Journal of Propulsion Technology, 2018, 39(9): 2110-2120(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201809024.htm [17] 宋国兴, 李军, 周游天, 等. 轴流压气机进气旋流畸变实验与仿真研究[J]. 风机技术, 2017, 59(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FENG201705001.htmSONG G X, LI J, ZHOU Y T, et al. The experiment and simulation of inlet swirl distortion for axial compressor[J]. Chinese Journal of Turbomachinery, 2017, 59(5): 1-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FENG201705001.htm [18] Society of Automotive Engineers. A method for assessing inlet swirl distortion: AIR 5686[R]. Warrendale: SAE, 2010. [19] 胡伟波, 程邦勤, 陈志敏, 等. 整体涡旋流畸变对压气机性能影响的研究[J]. 推进技术, 2015, 36(9): 1324-1330. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509007.htmHU W B, CHENG B Q, CHEN Z M, et al. Investigation on effects of bulk swirl distortion on compressor performance[J]. Journal of Propulsion Technology, 2015, 36(9): 1324-1330(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509007.htm [20] 程邦勤, 纪振伟, 胡伟波, 等. 对涡旋流畸变对单级跨声速压气机性能影响的数值研究[J]. 推进技术, 2017, 38(8): 1776-1786.CHENG B Q, JI Z W, HU W B, et al. Effects of paired swirl distortion on single stage transonic compressor performance using numerical simulation[J]. Journal of Propulsion Technology, 2017, 38(8): 1776-1786(in Chinese). [21] 胡伟波, 程邦勤, 陈志敏, 等. 应用改进的平行压气机模型预测旋流畸变对压气机性能的影响[J]. 推进技术, 2016, 37(8): 1485-1489. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608011.htmHU W B, CHENG B Q, CHEN Z M, et al. Prognostication for effects of swirl distortion on compressor performance with modified parallel compressor model[J]. Journal of Propulsion Technology, 2016, 37(8): 1485-1489(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608011.htm