留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进人工鱼群算法的无人直升机编队航迹规划

马梓元 龚华军 王新华

马梓元, 龚华军, 王新华等 . 基于改进人工鱼群算法的无人直升机编队航迹规划[J]. 北京航空航天大学学报, 2021, 47(2): 406-413. doi: 10.13700/j.bh.1001-5965.2020.0203
引用本文: 马梓元, 龚华军, 王新华等 . 基于改进人工鱼群算法的无人直升机编队航迹规划[J]. 北京航空航天大学学报, 2021, 47(2): 406-413. doi: 10.13700/j.bh.1001-5965.2020.0203
MA Ziyuan, GONG Huajun, WANG Xinhuaet al. Trajectory planning of unmanned helicopter formation based on improved artificial fish swarm algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 406-413. doi: 10.13700/j.bh.1001-5965.2020.0203(in Chinese)
Citation: MA Ziyuan, GONG Huajun, WANG Xinhuaet al. Trajectory planning of unmanned helicopter formation based on improved artificial fish swarm algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 406-413. doi: 10.13700/j.bh.1001-5965.2020.0203(in Chinese)

基于改进人工鱼群算法的无人直升机编队航迹规划

doi: 10.13700/j.bh.1001-5965.2020.0203
基金项目: 

中央高校基本科研业务费专项资金 NZ2019008

详细信息
    作者简介:

    马梓元  男, 硕士研究生。主要研究方向: 先进飞行控制技术

    龚华军  男, 博士, 教授, 博士生导师。主要研究方向: 先进飞行控制技术、飞行综合控制、系统建模与仿真

    王新华  男, 博士, 副教授, 硕士生导师。主要研究方向: 舰载机着舰引导与控制、直升机飞行控制、无人机飞行控制

    通讯作者:

    龚华军. E-mail: ghj301@nuaa.edu.cn

  • 中图分类号: V279

Trajectory planning of unmanned helicopter formation based on improved artificial fish swarm algorithm

Funds: 

the Fundamental Research Funds for the Central Universities NZ2019008

More Information
  • 摘要:

    针对无人直升机(UH)编队的航迹规划问题,提出了一种基于改进人工鱼群算法(AFSA)的航迹规划算法。从邻域学习和算法特性2个角度出发,针对人工鱼群算法中的人工鱼视野模型提出了一种人工鱼自适应视野模型,并对其鱼群的进化策略在无性繁殖方式的基础上进行了改进;从规划原理、代价函数、约束条件3个方面建立了无人直升机编队航迹规划模型;针对航迹规划中普遍存在的搜索效率低、精度差等特有问题改进了所提算法的编码方式和聚类策略。利用三机编队航迹规划的算例对所提算法进行了验证,仿真结果证明,通过对人工鱼群算法的改进、航迹规划模型的建立等措施实现了良好的无人直升机编队航迹规划,同时在搜索效率、收敛速度及求解精度上都有了显著提高。

     

  • 图 1  人工鱼群进化策略改进示意图

    Figure 1.  Schematic diagram of improvement of evolution strategy of artificial fish swarm algorithm

    图 2  航迹连接示意图

    Figure 2.  Schematic diagram of trajectory connection

    图 3  基于改进人工鱼群算法的航迹规划算法流程

    Figure 3.  Flowchart of trajectory planning algorithm based on improved AFSA

    图 4  水平面规划航迹

    Figure 4.  Horizontal trajectory planning

    图 5  三维空间规划航迹

    Figure 5.  3D space trajectory planning

    图 6  搜索算法性能对比

    Figure 6.  Performance comparison of search algorithms

    表  1  无人直升机与目标信息

    Table  1.   UH and target information

    指令到达时间/s 无人直升机 x/km y/km 目标 x/km y/km
    UH1 0 30 T1 1 050 1 020
    7 800 UH2 30 0 T2 1 020 1 050
    UH3 0 0 T3 1 050 1 050
    下载: 导出CSV

    表  2  威胁参数设置

    Table  2.   Threat parameter setting

    威胁编号 类型 (x, y)/km
    1 气象 (140, 140)
    2 地空导弹 (240, 180)
    3 雷达 (310, 270)
    4 气象 (350, 480)
    5 地空导弹 (500, 480)
    6 地空导弹 (600, 680)
    7 雷达 (710, 770)
    下载: 导出CSV

    表  3  无人直升机实际到达时间

    Table  3.   Actual arrival time of UH

    无人直升机 实际到达时间/s 与指令到达时间差值/s
    UH1 7 784.6 -16.4
    UH2 7 818.83 18.83
    UH3 7 769.47 -30.53
    下载: 导出CSV
  • [1] 朱黔, 周锐. 具有持续侦察时间约束的协同航路规划[J]. 北京航空航天大学学报, 2016, 42(10): 2130-2138. doi: 10.13700/j.bh.1001-5965.2015.0613

    ZHU Q, ZHOU R. Cooperative path planning with reconnaissance duration time constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2130-2138(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0613
    [2] 喻俊松, 王琪, 徐蓉瑞. 基于改进人工鱼群算法的无人机路径规划[J]. 弹箭与制导学报, 2015, 35(3): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201503010.htm

    YU J S, WANG Q, XU R R. UAV path planning based on improved artificial fish swarm algorithm[J]. Journal of Missile and Guidance, 2015, 35(3): 37-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201503010.htm
    [3] 高晔, 周军, 谢亚恩, 等. 多无人机编队突发威胁规避路径规划算法[J]. 哈尔滨工程大学学报, 2019, 40(12): 2036-2043. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201912015.htm

    GAO Y, ZHOU J, XIE Y E, et al. Path planning algorithm for multi UAV formation threat avoidance[J]. Journal of Harbin Engineering University, 2019, 40(12): 2036-2043(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201912015.htm
    [4] 徐钊, 胡劲文, 马云红, 等. 无人机碰撞规避路径规划算法研究[J]. 西北工业大学学报, 2019, 37(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201901015.htm

    XU Z, HU J W, MA Y H, et al. Research on collision avoidance path planning algorithm of UAV[J]. Journal of Northwest University of Technology, 2019, 37(1): 100-106(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201901015.htm
    [5] 周德云, 王鹏飞, 李枭扬, 等. 基于多目标优化算法的多无人机协同航迹规划[J]. 系统工程与电子技术, 2017, 39(4): 782-787. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201704013.htm

    ZHOU D Y, WANG P F, LI X Y, et al. Cooperative path plan-ning of multi-UAV based on multi-objective optimization algorithm[J]. Systems Engineering and Electronics, 2017, 39(4): 782-787(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201704013.htm
    [6] 吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J]. 北京航空航天大学学报, 2020(2020-05-06)[2020-07-02].

    https: //www.cnki.net/kcms/detail/11.2625.V.20200506.1327.003.html. WU A, YANG R N, LIANG X L, et al.Cooperative search algorithm based on pheromone decision for UAV swarm[J].Journal of Beijing University of Aeronautics and Astronautics, 2020(2020-05-06)[2020-07-02].https: //www.cnki.net/kcms/detail/11.2625.V.20200506.1327.003.html (in Chinese).
    [7] 程泽新, 李东生, 高杨. 一种改进遗传算法的无人机航迹规划[J]. 计算机仿真, 2019, 36(12): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201912007.htm

    CHENG Z X, LI D S, GAO Y. GASA drone path planning to improve mutation strategy[J]. Computer Simulation, 2019, 36(12): 31-35(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201912007.htm
    [8] 程晓明. 无人机双机协同航迹规划技术研究[D]. 南京: 南京航空航天大学, 2015.

    CHENG X M.Research on cooperative path planning technology of UAV dual aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [9] 于鸿达, 王从庆, 贾峰, 等. 一种基于差分进化混合粒子群算法的多无人机航迹规划[J]. 电光与控制, 2018, 25(5): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201805006.htm

    YU H D, WANG C Q, JIA F, et al. Path planning for multiple UAVs based on hybrid particle swarm optimization with differential evolution[J]. Electronics Optics & Control, 2018, 25(5): 22-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201805006.htm
    [10] 赵克新, 黄长强, 王渊, 等. 基于混沌蚁狮算法的无人机航迹规划[J]. 飞行力学, 2018, 36(1): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201801022.htm

    ZHAO K X, HUANG C Q, WANG Y, et al. UAV path planning based on chaos ant lion algorithm[J]. Flight Dynamics, 2018, 36(1): 93-96(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201801022.htm
    [11] 范伟伦, 李薇, 冯杭. 基于改进RRT算法的无人机实时航迹规划[J]. 舰船电子工程, 2019, 39(2): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201902015.htm

    FAN W L, LI W, FENG H. UAV trajectory planning based on an improved RRT algorithm[J]. Ship Electronic Engineering, 2019, 39(2): 56-60(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201902015.htm
    [12] WEN N, SU X, MA P, et al. Online UAV path planning in uncertain and hostile environments[J]. International Journal of Machine Learning and Cybernetics, 2015, 8(2): 1-19. doi: 10.1007/s13042-015-0339-4
    [13] 白瑞光, 孙鑫, 陈秋双, 等. 基于Gauss伪谱法的多UAV协同航迹规划[J]. 宇航学报, 2014, 35(9): 1022-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201409007.htm

    BAI R G, SUN X, CHEN Q S, et al. Multiple UAV cooperative trajectory planning based on Gauss pseudospectral method[J]. Journal of Astronautics, 2014, 35(9): 1022-1029(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201409007.htm
    [14] 晏青, 熊峻江, 游思明. 基于动态RCS的无人机航迹实时规划[J]. 北京航空航天大学学报, 2011, 37(9): 1115-1121. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I9/1115

    YAN Q, XIONG J J, YOU S M. Real-time programming method for flight path of unmanned vehicle based on dynamic RCS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1115-1121(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I9/1115
    [15] 李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模式: 鱼群算法[J]. 系统工程理论与实践, 2002, 22(11): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200211006.htm

    LI X L, SHAO Z J, QIAN J X. An optimizing method based on autonomous animats: Fish-swarm algorithm[J]. Systems Engineering-Theory & Practice, 2002, 22(11): 32-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200211006.htm
    [16] JIANG M Y, MASTORAKIS N E, YUAN D F, et al.Multi-threshold image segmentation with improved artificial fish swarm algorithm[C]//Proceedings of the European Computing Conference (ECC2009).Berlin: Springer, 2009: 133-138.
    [17] YAO Z G, REN Z H. Path planning for coalmine rescue robot based on hybrid adaptive artificial fish swarm algorithm[J]. International Journal of Control and Automation, 2014, 7(8): 1-12. doi: 10.14257/ijca.2014.7.8.01
    [18] BREAD R W, MCLAIN T W, GOODRICH M A, et al.Coordinated target assignment and intercept for unmanned air vehicles[C]//Proceedings of IEEE Transactions on Robotics and Automation.Piscataway: IEEE Press, 2002: 911-922.
    [19] LU J S, WANG N, CHEN J. Cooperative path planning for multiple UHs using an AIS-ACO hybrid approach[C]//2011 International Conference on Electronic and Mechanical Engineering and Information Technology.Piscataway: IEEE Press, 2011: 4301-4305.
    [20] KEIKHA M M. Improved simulated annealing using momentum terms[C]//2011 IEEE Second International Conference on Intelligent Systems, Modeling and Simulation. Piscataway: IEEE Press, 2011: 44-48.
    [21] 周瑞, 黄长强, 魏政磊, 等. MP-GWO算法在多UCAV协同航迹规划中的应用[J]. 空军工程大学学报(自然科学版), 2017, 18(5): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201705005.htm

    ZHOU R, HUANG C Q, WEI Z L, et al. Application of MP-GWO algorithm in multi UCAV coordinated track planning[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(5): 24-29(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201705005.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1299
  • HTML全文浏览量:  141
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 录用日期:  2020-06-18
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答