-
摘要:
针对战斗机大机动飞行输入饱和问题,提出了一种自适应神经网络动态面控制方法。采用径向基(RBF)神经网络逼近飞机系统的不确定性,利用双曲正切函数处理系统的输入饱和问题,根据饱和受限后的实际控制输入与期望控制输入之差定义新误差变量,结合该误差变量设计大机动飞行控制律,并构造鲁棒项抵消神经网络逼近误差、外部干扰和建模误差的影响,利用动态面控制技术避免对虚拟控制器的复杂求导并减小计算量。根据Lyapunov稳定性定理证明了闭环控制系统所有信号有界,且通过选择合适的设计参数能够使姿态角跟踪误差收敛到原点的任意小邻域内。通过仿真结果的分析,验证了所提方法具有较好的鲁棒性和稳定性。
Abstract:An adaptive neural network dynamic surface control method is proposed to resolve the input saturation problem of aircraft high-
g maneuver flight. The Radial Basis Function (RBF) neural networks are utilized to approximate the unknown uncertain parts of aircraft model. The hyperbolic tangent function is used to handle the system input saturation problem. A new error is defined by the difference between saturated actual control input and desired control input, and a high-g maneuver flight control law is designed by combining this error, and the robust term is constructed to offset the influence of approximation error of neural network, external interference and modeling errors. The dynamic surface control technique is used to avoid the complex derivative operation of the virtual controller and reduce computation amount. It is proved from Lyapunov stability theorem that all the signals in the closed-loop control system are bounded, and the attitude angle tracking error can converge to an arbitrarily small neighborhood around zero by choosing the appropriate design parameters. Simulation results demonstrate the good robustness and stability of the proposed method.-
Key words:
- flight control /
- high-g maneuver /
- input saturation /
- neural networks /
- robustness
-
[1] BRINKER J, WISE K. Stability and flying qualities robustness of a dynamic inversion aircraft control law[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1270-1277. doi: 10.2514/3.21782 [2] 龙晋伟, 潘文俊, 王立新, 等. 基于任务评定的战斗机大迎角飞行控制律设计方法[J]. 北京航空航天大学学报, 2014, 40(6): 844-848. doi: 10.13700/j.bh.1001-5965.2013.0436LONG J W, PAN W J, WANG L X, et al. Design approach of nonlinear flight control law for fighter at high angle-of-attack based on mission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 844-848(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0436 [3] 孙勇, 章卫国, 章萌. 基于神经网络的反步自适应大机动飞行控制[J]. 系统工程与电子技术, 2011, 33(5): 1113-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201105034.htmSUN Y, ZHANG W G, ZHANG M. Backstepping adaptive high maneuvers flight control based on neural network[J]. Systems Engineering and Electronics, 2011, 33(5): 1113-1117(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201105034.htm [4] 虞江航, 徐军, 黄雨可. 一类反馈型非线性系统的跟踪控制[J]. 北京航空航天大学学报, 2019, 45(7): 1444-1450. doi: 10.13700/j.bh.1001-5965.2018.0688YU J H, XU J, HUANG Y K. Tracking control for a class of nonlinear systems in feedback form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1444-1450(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0688 [5] 冯福沁, 张胜修, 曹立佳, 等. 基于RBF神经网络的自适应反演大机动飞行控制器设计[J]. 电光与控制, 2013, 20(5): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201305016.htmFENG F Q, ZHANG S X, CAO L J, et al. Design of adaptive backstepping controller for high maneuvering flight based on RBF neural network[J]. Electronics Optics & Control, 2013, 20(5): 63-68(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201305016.htm [6] 张凯, 杨锁昌, 张宽桥, 等. 考虑导弹自动驾驶仪动态特性的新型制导律[J]. 北京航空航天大学学报, 2017, 43(8): 1693-1704. doi: 10.13700/j.bh.1001-5965.2016.0630ZHANG K, YANG S C, ZHANG K Q, et al. Novel guidance law accounting for dynamics of missile autopilot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1693-1704(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0630 [7] 陈谋, 姜长生, 吴庆宪. 基于干扰观测器的一类不确定非线性系统鲁棒H∞控制[J]. 控制理论与应用, 2006, 23(4): 611-614. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200604023.htmCHEN M, JIANG C S, WU Q X. Robust H-infinity control for a class of nonlinear uncertain systems with disturbance observer[J]. Control Theory & Applications, 2006, 23(4): 611-614(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200604023.htm [8] CHEN M, GE S S. Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer[J]. IEEE Transactions on Cybernetics, 2013, 43(4): 1213-1225. doi: 10.1109/TSMCB.2012.2226577 [9] 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2): 220-233. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201202005.htmLI J, ZUO B, DUAN M Y, et al. Adaptive Terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J] Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 220-233(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201202005.htm [10] 陈龙胜, 王琦. 输入受限的非仿射纯反馈不确定系统自适应动态面容错控制[J]. 控制理论与应用, 2016, 33(2): 221-227. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201602011.htmCHEN L S, WANG Q. Adaptive dynamic surface fault-tolerant control for uncertain non-affine pure feedback systems with input constraint[J]. Control Theory & Applications, 2016, 33(2): 221-227(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201602011.htm [11] YOO S J, PARK J B, CHOI Y H. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(6): 1342-1355. doi: 10.1109/TSMCB.2006.875869 [12] VAN OORT E R, SONNEVELDT L, CHU Q P, et al.A comparison of adaptive nonlinear control designs for an over-actuated fighter aircraft model: AIAA-2008-6786[R]. Reston: AIAA, 2008. [13] LIU Z C, DONG X M, XIE W J, et al. Adaptive fuzzy control for pure-feedback nonlinear systems with non-affine functions being semi-bounded and in-differentiable[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 395-408. doi: 10.1109/TFUZZ.2017.2666422 [14] 左仁伟, 董新民, 刘棕成. 纯反馈非线性系统的鲁棒自适应跟踪控制[J]. 电光与控制, 2018, 25(10): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201810005.htmZUO R W, DONG X M, LIU Z C. Robust adaptive tracking control for pure-feedback nonlinear systems[J]. Electronics Optics & Control, 2018, 25(10): 17-23(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201810005.htm [15] CUI B, XIA Y Q, LIU K, et al. Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: A smooth control approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4920-4932. doi: 10.1109/TNNLS.2019.2959016 [16] XU B, SHOU Y X, LUO J, et al. Neural learning control of strict-feedback systems using disturbance observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5): 1269-1307. http://www.ncbi.nlm.nih.gov/pubmed/30222586 [17] BU X W, XIAO Y, LEI H M. An adaptive critic design-based fuzzy neural controller for hypersonic vehicles: Predefined behavioral nonaffine control[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(4): 1871-1881. doi: 10.1109/TMECH.2019.2928699 [18] YAN X, CHEN M, FENG G, et al. Fuzzy robust constrained control for nonlinear systems with input saturation and external disturbances[J]. IEEE Transactions on Fuzzy Systems, 2019, 99: 1. http://www.researchgate.net/publication/337174367_Fuzzy_Robust_Constrained_Control_for_Nonlinear_Systems_with_Input_Saturation_and_External_Disturbances