留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输入饱和情形下战斗机大机动动态面控制

周章勇 邵书义 胡伟

周章勇, 邵书义, 胡伟等 . 输入饱和情形下战斗机大机动动态面控制[J]. 北京航空航天大学学报, 2021, 47(2): 247-254. doi: 10.13700/j.bh.1001-5965.2020.0209
引用本文: 周章勇, 邵书义, 胡伟等 . 输入饱和情形下战斗机大机动动态面控制[J]. 北京航空航天大学学报, 2021, 47(2): 247-254. doi: 10.13700/j.bh.1001-5965.2020.0209
ZHOU Zhangyong, SHAO Shuyi, HU Weiet al. High-g maneuver dynamic surface control of fighter plane under input saturation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 247-254. doi: 10.13700/j.bh.1001-5965.2020.0209(in Chinese)
Citation: ZHOU Zhangyong, SHAO Shuyi, HU Weiet al. High-g maneuver dynamic surface control of fighter plane under input saturation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 247-254. doi: 10.13700/j.bh.1001-5965.2020.0209(in Chinese)

输入饱和情形下战斗机大机动动态面控制

doi: 10.13700/j.bh.1001-5965.2020.0209
基金项目: 

安徽省科技重大专项 18030901058

详细信息
    作者简介:

    周章勇  男, 博士研究生, 高级工程师。主要研究方向: 非线性系统控制与飞行控制

    通讯作者:

    周章勇. E-mail: ahhf5055@139.com

  • 中图分类号: TP273

High-g maneuver dynamic surface control of fighter plane under input saturation

Funds: 

Major Science and Technology Projects in Anhui Province 18030901058

More Information
  • 摘要:

    针对战斗机大机动飞行输入饱和问题,提出了一种自适应神经网络动态面控制方法。采用径向基(RBF)神经网络逼近飞机系统的不确定性,利用双曲正切函数处理系统的输入饱和问题,根据饱和受限后的实际控制输入与期望控制输入之差定义新误差变量,结合该误差变量设计大机动飞行控制律,并构造鲁棒项抵消神经网络逼近误差、外部干扰和建模误差的影响,利用动态面控制技术避免对虚拟控制器的复杂求导并减小计算量。根据Lyapunov稳定性定理证明了闭环控制系统所有信号有界,且通过选择合适的设计参数能够使姿态角跟踪误差收敛到原点的任意小邻域内。通过仿真结果的分析,验证了所提方法具有较好的鲁棒性和稳定性。

     

  • 图 1  滚转角响应曲线

    Figure 1.  Roll angle response curves

    图 2  迎角响应曲线

    Figure 2.  Attack angle response curves

    图 3  侧滑角响应曲线

    Figure 3.  Sideslip angle response curves

    图 4  控制舵面偏转仿真结果

    Figure 4.  Control surface deflection simulation results

  • [1] BRINKER J, WISE K. Stability and flying qualities robustness of a dynamic inversion aircraft control law[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1270-1277. doi: 10.2514/3.21782
    [2] 龙晋伟, 潘文俊, 王立新, 等. 基于任务评定的战斗机大迎角飞行控制律设计方法[J]. 北京航空航天大学学报, 2014, 40(6): 844-848. doi: 10.13700/j.bh.1001-5965.2013.0436

    LONG J W, PAN W J, WANG L X, et al. Design approach of nonlinear flight control law for fighter at high angle-of-attack based on mission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 844-848(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0436
    [3] 孙勇, 章卫国, 章萌. 基于神经网络的反步自适应大机动飞行控制[J]. 系统工程与电子技术, 2011, 33(5): 1113-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201105034.htm

    SUN Y, ZHANG W G, ZHANG M. Backstepping adaptive high maneuvers flight control based on neural network[J]. Systems Engineering and Electronics, 2011, 33(5): 1113-1117(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201105034.htm
    [4] 虞江航, 徐军, 黄雨可. 一类反馈型非线性系统的跟踪控制[J]. 北京航空航天大学学报, 2019, 45(7): 1444-1450. doi: 10.13700/j.bh.1001-5965.2018.0688

    YU J H, XU J, HUANG Y K. Tracking control for a class of nonlinear systems in feedback form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1444-1450(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0688
    [5] 冯福沁, 张胜修, 曹立佳, 等. 基于RBF神经网络的自适应反演大机动飞行控制器设计[J]. 电光与控制, 2013, 20(5): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201305016.htm

    FENG F Q, ZHANG S X, CAO L J, et al. Design of adaptive backstepping controller for high maneuvering flight based on RBF neural network[J]. Electronics Optics & Control, 2013, 20(5): 63-68(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201305016.htm
    [6] 张凯, 杨锁昌, 张宽桥, 等. 考虑导弹自动驾驶仪动态特性的新型制导律[J]. 北京航空航天大学学报, 2017, 43(8): 1693-1704. doi: 10.13700/j.bh.1001-5965.2016.0630

    ZHANG K, YANG S C, ZHANG K Q, et al. Novel guidance law accounting for dynamics of missile autopilot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1693-1704(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0630
    [7] 陈谋, 姜长生, 吴庆宪. 基于干扰观测器的一类不确定非线性系统鲁棒H控制[J]. 控制理论与应用, 2006, 23(4): 611-614. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200604023.htm

    CHEN M, JIANG C S, WU Q X. Robust H-infinity control for a class of nonlinear uncertain systems with disturbance observer[J]. Control Theory & Applications, 2006, 23(4): 611-614(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200604023.htm
    [8] CHEN M, GE S S. Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer[J]. IEEE Transactions on Cybernetics, 2013, 43(4): 1213-1225. doi: 10.1109/TSMCB.2012.2226577
    [9] 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2): 220-233. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201202005.htm

    LI J, ZUO B, DUAN M Y, et al. Adaptive Terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J] Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 220-233(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201202005.htm
    [10] 陈龙胜, 王琦. 输入受限的非仿射纯反馈不确定系统自适应动态面容错控制[J]. 控制理论与应用, 2016, 33(2): 221-227. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201602011.htm

    CHEN L S, WANG Q. Adaptive dynamic surface fault-tolerant control for uncertain non-affine pure feedback systems with input constraint[J]. Control Theory & Applications, 2016, 33(2): 221-227(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201602011.htm
    [11] YOO S J, PARK J B, CHOI Y H. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(6): 1342-1355. doi: 10.1109/TSMCB.2006.875869
    [12] VAN OORT E R, SONNEVELDT L, CHU Q P, et al.A comparison of adaptive nonlinear control designs for an over-actuated fighter aircraft model: AIAA-2008-6786[R]. Reston: AIAA, 2008.
    [13] LIU Z C, DONG X M, XIE W J, et al. Adaptive fuzzy control for pure-feedback nonlinear systems with non-affine functions being semi-bounded and in-differentiable[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 395-408. doi: 10.1109/TFUZZ.2017.2666422
    [14] 左仁伟, 董新民, 刘棕成. 纯反馈非线性系统的鲁棒自适应跟踪控制[J]. 电光与控制, 2018, 25(10): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201810005.htm

    ZUO R W, DONG X M, LIU Z C. Robust adaptive tracking control for pure-feedback nonlinear systems[J]. Electronics Optics & Control, 2018, 25(10): 17-23(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201810005.htm
    [15] CUI B, XIA Y Q, LIU K, et al. Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: A smooth control approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4920-4932. doi: 10.1109/TNNLS.2019.2959016
    [16] XU B, SHOU Y X, LUO J, et al. Neural learning control of strict-feedback systems using disturbance observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5): 1269-1307. http://www.ncbi.nlm.nih.gov/pubmed/30222586
    [17] BU X W, XIAO Y, LEI H M. An adaptive critic design-based fuzzy neural controller for hypersonic vehicles: Predefined behavioral nonaffine control[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(4): 1871-1881. doi: 10.1109/TMECH.2019.2928699
    [18] YAN X, CHEN M, FENG G, et al. Fuzzy robust constrained control for nonlinear systems with input saturation and external disturbances[J]. IEEE Transactions on Fuzzy Systems, 2019, 99: 1. http://www.researchgate.net/publication/337174367_Fuzzy_Robust_Constrained_Control_for_Nonlinear_Systems_with_Input_Saturation_and_External_Disturbances
  • 加载中
图(4)
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  157
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 录用日期:  2020-08-28
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答