留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器视觉的轻型梁三维振动测量方法

彭聪 缪卫东 曾聪

彭聪, 缪卫东, 曾聪等 . 基于机器视觉的轻型梁三维振动测量方法[J]. 北京航空航天大学学报, 2021, 47(2): 207-212. doi: 10.13700/j.bh.1001-5965.2020.0211
引用本文: 彭聪, 缪卫东, 曾聪等 . 基于机器视觉的轻型梁三维振动测量方法[J]. 北京航空航天大学学报, 2021, 47(2): 207-212. doi: 10.13700/j.bh.1001-5965.2020.0211
PENG Cong, MIAO Weidong, ZENG Conget al. Three-dimensional vibration measurement method for lightweight beam based on machine vision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 207-212. doi: 10.13700/j.bh.1001-5965.2020.0211(in Chinese)
Citation: PENG Cong, MIAO Weidong, ZENG Conget al. Three-dimensional vibration measurement method for lightweight beam based on machine vision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 207-212. doi: 10.13700/j.bh.1001-5965.2020.0211(in Chinese)

基于机器视觉的轻型梁三维振动测量方法

doi: 10.13700/j.bh.1001-5965.2020.0211
基金项目: 

国家自然科学基金 61703203

江苏省自然科学基金 BK20170812

中央高校基本科研业务费专项资金 56XAA19040

详细信息
    作者简介:

    彭聪  女, 博士, 教授, 硕士生导师。主要研究方向: 振动测量及振动控制、视觉测量、视觉重建

    缪卫东  男, 硕士研究生。主要研究方向: 视觉测量技术

    曾聪  男, 硕士研究生。主要研究方向: 视觉测量技术

    通讯作者:

    彭聪. E-mail: pengcong.2006@163.com

  • 中图分类号: TP391.41

Three-dimensional vibration measurement method for lightweight beam based on machine vision

Funds: 

National Natural Science Foundation of China 61703203

Natural Science Foundation of Jiangsu Province BK20170812

the Fundamental Research Funds for the Central Universities 56XAA19040

More Information
  • 摘要:

    振动测量是状态检测和故障诊断的方法之一,针对传统接触式测量方法中存在负载效应等问题,对基于机器视觉的三维振动测量方法进行了研究。首先,基于视频相位的二维振动测量方法,提取出相机所采集图像中被测目标的二维振动数据。然后,在二维振动测量方法的基础上,结合双目立体视觉,设计了一种基于机器视觉的三维振动测量方法。最后,进行了悬臂梁的振动测量实验。结果表明:所提方法可以实现无接触和无标记的振动测量,并能准确测量出三维的振动信息。

     

  • 图 1  实验装置

    Figure 1.  Experimental setup

    图 2  左右相机采集图片

    Figure 2.  Pictures from left and right cameras

    图 3  左相机水平方向位移信号测量结果

    Figure 3.  Measurement results of horizontal displacement signal of left camera

    图 4  右相机水平方向位移信号测量结果

    Figure 4.  Measurement results of horizontal displacement signal of right camera

    图 5  被测点的三维运动

    Figure 5.  Three-dimensional trajectory of measured point

    表  1  重投影误差计算结果

    Table  1.   Reprojection error calculation results

    帧数 重建所得的坐标/mm 重投影误差/pixel
    x y z 左相机 右相机
    1 7.584 -114.794 880.039 0.043 0.051
    2 7.590 -114.792 880.037 0.045 0.052
    3 7.583 -114.791 880.036 0.042 0.051
    4 7.579 -114.793 880.037 0.044 0.053
    5 7.587 -114.793 880.037 0.041 0.051
    6 7.589 -114.791 880.036 0.043 0.052
    7 7.581 -114.792 880.039 0.044 0.054
    8 7.581 -114.794 880.038 0.041 0.053
    9 7.589 -114.793 880.037 0.046 0.052
    10 7.586 -114.790 880.039 0.044 0.052
    下载: 导出CSV
  • [1] LEE J J, SHINOZUKA M A. Vision-based system for remote sensing of bridge displacement[J]. NDT & E International, 2006, 39(5): 425-431.
    [2] LI J, HAO H, FAN K Q, et al. Development and application of a relative displacement sensor for structural health monitoring of composite bridges[J]. Structural Control and Health Monitoring, 2015, 22(4): 726-742. doi: 10.1002/stc.1714
    [3] POOZESH P, BAQERASD J, NIZERECKI C, et al. Large-area photogrammetry based testing of wind turbine blades[J]. Mechanical Systems and Signal Processing, 2017, 86: 98-115. doi: 10.1016/j.ymssp.2016.07.021
    [4] HUANG H, BADDOUR N, LIANG M. Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction[J]. Journal of Sound and Vibration, 2018, 414: 43-60. doi: 10.1016/j.jsv.2017.11.005
    [5] DILEK A U, OGUZ A D, SATIS F, et al. Condition monitoring of wind turbine blades and tower via an automated laser scanning system[J]. Engineering Structures, 2019, 189: 25-34. doi: 10.1016/j.engstruct.2019.03.065
    [6] MORLIER J, SALOM P, BOS F. New image processing tools for structural dynamic monitoring[J]. Key Engineering Materials, 2007, 347: 239-244. doi: 10.4028/www.scientific.net/KEM.347.239
    [7] BLACK J T, PITCHER N A, REEDER M F, et al. Videogrammetry dynamics measurements of a lightweight flexible wing in a wind tunnel[J]. Journal of Aircraft, 2010, 47(1): 172-180. doi: 10.2514/1.44545
    [8] CHANG C C, JI Y F. Flexible videogrammetric technique for three-dimensional structural vibration measurement[J]. Journal of Engineering Mechanics, 2007, 133(6): 656-664. doi: 10.1061/(ASCE)0733-9399(2007)133:6(656)
    [9] WANG W Z, MOTTERSHEAD J E, IHIE A, et al. Finite element model updating from full-field vibration measurement using digital image correlation[J]. Journal of Sound and Vibration, 2011, 330(8): 1599-1620. doi: 10.1016/j.jsv.2010.10.036
    [10] 孙伟, 何小元, 胥明, 等. 数字图像相关方法在膜材拉伸试验中的应用[J]. 工程力学, 2007, 24(2): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200702007.htm

    SUN W, HE X Y, XU M, et al. Study on the tension test of membrane materials using digital image correlation method[J]. Engineering Mechanics, 2007, 24(2): 34-38(in Chincese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200702007.htm
    [11] HA N S, JIN T, GOO N S. Modal analysis of an artificial wing mimicking an Allomyrina dichotoma beetle's hind wing for flapping-wing micro air vehicles by noncontact measurement techniques[J]. Optics and Lasers in Engineering, 2013, 51(5): 560-570. doi: 10.1016/j.optlaseng.2012.12.012
    [12] HA N S, VANG H M, GOO N S. Modal analysis using digital image correlation technique: An application to artificial wing mimicking beetle-s hind wing[J]. Experimental Mechanics, 2015, 55(5): 989-998. doi: 10.1007/s11340-015-9987-2
    [13] HUNADY R, PAVELKA P, LENGVARSKY P. Vibration and modal analysis of a rotating disc using high-speed 3D digital image correlation[J]. Mechanical Systems and Signal Processing, 2019, 121: 201-214. doi: 10.1016/j.ymssp.2018.11.024
    [14] BAKER S, MATTHEWS I. Lucas-Kanade 20 years on: A unifying framework[J]. International Journal of Computer Vision, 2004, 56(3): 221-255. doi: 10.1023/B:VISI.0000011205.11775.fd
    [15] HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1-3): 185-203. doi: 10.1016/0004-3702(81)90024-2
    [16] CAETANO E, SILVA S, BATEIRA J. A vision system for vibration monitoring of civil engineering structures[J]. Experimental Techniques, 2011, 25(4): 74-82.
    [17] AOYAMA T, LI L, JIANG M, et al. Vibration sensing of a bridge model using a multithread active vision system[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 179-189. doi: 10.1109/TMECH.2017.2764504
    [18] YU Q B, YIN A J, ZHANG Q, et al. Optical flow tracking method for vibration identification of out-of-plane vision[J]. Journal of Vibroengineering, 2017, 19(4): 2363-2374. doi: 10.21595/jve.2017.17771
    [19] FLEET D J, JEPSON A D. Computation of component image velocity from local phase information[J]. International Journal of Computer Vision, 1990, 5(1): 77-104. doi: 10.1007/BF00056772
    [20] CHEN J G, WADHWA N, CHA Y J, et al. Modal identification of simple structures with high-speed video using motion magnification[J]. Journal of Sound and Vibration, 2015, 345: 58-71. doi: 10.1016/j.jsv.2015.01.024
    [21] CHEN J G, DAVIS A, WADHWA N, et al. Video camera-based vibration measurement for civil infrastructure applications[J]. Journal of Infrastructure Systems, 2017, 23(3): 1-11.
    [22] PENG C, ZENG C, WANG Y G. Camera-based micro-vibration measurement for lightweight structure using an improved phase-based motion extraction[J]. IEEE Sensors Journal, 2020, 20(5): 2590-2599. doi: 10.1109/JSEN.2019.2951128
    [23] PENG C, ZHU M T, WANG Y, et al. Phase-based video measurement for active vibration suppression performance of the magnetically suspended rotor system[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1497-1505. doi: 10.1109/TIE.2020.2967725
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  278
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 录用日期:  2020-06-19
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答