留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时域映射的多无人机系统给定时间分布式最优集结

丁超 魏瑞轩 周凯

丁超, 魏瑞轩, 周凯等 . 基于时域映射的多无人机系统给定时间分布式最优集结[J]. 北京航空航天大学学报, 2021, 47(2): 315-322. doi: 10.13700/j.bh.1001-5965.2020.0215
引用本文: 丁超, 魏瑞轩, 周凯等 . 基于时域映射的多无人机系统给定时间分布式最优集结[J]. 北京航空航天大学学报, 2021, 47(2): 315-322. doi: 10.13700/j.bh.1001-5965.2020.0215
DING Chao, WEI Ruixuan, ZHOU Kaiet al. Distributed optimal rendezvous of multi-UAV systems in prescribed time based on time-domain mapping[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 315-322. doi: 10.13700/j.bh.1001-5965.2020.0215(in Chinese)
Citation: DING Chao, WEI Ruixuan, ZHOU Kaiet al. Distributed optimal rendezvous of multi-UAV systems in prescribed time based on time-domain mapping[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 315-322. doi: 10.13700/j.bh.1001-5965.2020.0215(in Chinese)

基于时域映射的多无人机系统给定时间分布式最优集结

doi: 10.13700/j.bh.1001-5965.2020.0215
基金项目: 

科技创新2030-“新一代人工智能”重大项目 2018AAA0102403

国家自然科学基金 61573373

详细信息
    作者简介:

    丁超  男, 博士研究生。主要研究方向: 多智能体系统协同控制与非线性系统控制

    魏瑞轩  男, 博士, 教授, 博士生导师。主要研究方向: 导航制导与飞行控制

    周凯  男, 博士研究生。主要研究方向: 强化学习理论与应用

    通讯作者:

    魏瑞轩. E-mail: rxwei369@sohu.com

  • 中图分类号: TP273

Distributed optimal rendezvous of multi-UAV systems in prescribed time based on time-domain mapping

Funds: 

Science and Technology Innovation 2030-Key Project of "New Generation Artificial Intelligence" 2018AAA0102403

National Natural Science Foundation of China 61573373

More Information
  • 摘要:

    针对多无人机系统给定时间最优集结问题,建立了基于时域映射的分布式优化框架。首先,引入一类特殊的时域映射,将原时域的给定时间决策问题转化为了无限域中的渐近稳定问题,简化了分析设计流程。其次,进一步设计了给定时间梯度下降算法,其收敛时间与系统初始条件及其他参数无关,能够被预先给定,且算法时变增益的使用消除了参数选择过程,在全局信息严重匮乏的情况下仍然适用。仿真结果表明:所提方法能够在给定时间内实现多无人机分布式最优集结,并保证任务时间内闭环系统全局有界。

     

  • 图 1  无人机状态响应xi1

    Figure 1.  State response xi1 of UAVs

    图 2  无人机状态响应xi2

    Figure 2.  State response xi2 of UAVs

    图 3  无人机决策指令ui1

    Figure 3.  Decision command ui1 of UAVs

    图 4  无人机决策指令ui2

    Figure 4.  Decision command ui2 of UAVs

    图 5  无人机群航迹与全局优化函数等高线

    Figure 5.  Flight path of UAV swarm and contour of global optimization function

  • [1] BEARD R D, MCLAIN T W, GOODRICH M A, et al. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Automation, 2002, 18(6): 911-922. doi: 10.1109/TRA.2002.805653
    [2] SCARDOVI L, SEPULCHRE R. Synchronization in networks of identical linear systems[J]. Automatica, 2009, 48(8): 2557-2562.
    [3] SHI G D, JOHANSSON K. Robust consensus for continuous time multi-agent dynamics[J]. SIAM Journal on Control and Optimization, 2013, 48(5): 3673-3691.
    [4] DIMAROGONAS D, KYRIAKOPOULOS K. On the rendezvous problem for multiple nonholonomic agents[J]. IEEE Transactions on Automatic Control, 2007, 52(5): 916-922. doi: 10.1109/TAC.2007.895897
    [5] DING C, DONG X M, SHI C, et al. Leaderless output consensus of multi-agent systems with distinct relative degrees under switching directed topologies[J]. IET Control Theory and Applications, 2019, 13(3): 313-320. doi: 10.1049/iet-cta.2018.5140
    [6] 何吕龙, 张佳强, 侯岳奇, 等. 有向通信拓扑和时延条件下的无人机集群时变编队控制[J]. 北京航空航天大学学报, 2020, 46(2): 314-323. doi: 10.13700/j.bh.1001-5965.2019.0206

    HE L L, ZHANG J Q, HOU Y Q, et al. Time-varying formation control for UAV swarm with directed interaction topology and communication delay[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 314-323(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0206
    [7] NEDIC A, OZDAGLAR A. Distributed subgradient methods for multi-agent optimization[J]. IEEE Transactions on Automatic Control, 2009, 54(1): 48-61. doi: 10.1109/TAC.2008.2009515
    [8] ZHU M H, MARTÍNEZ S. On distributed convex optimization under inequality and equality constraints[J]. IEEE Transactions on Automatic Control, 2012, 57(1): 151-164. doi: 10.1109/TAC.2011.2167817
    [9] DUCHI J, AGARWAL A, WAINWRIGHT M. Dual averaging for distributed optimization: Convergence and network scaling[J]. IEEE Transactions on Automatic Control, 2012, 57(3): 592-606. doi: 10.1109/TAC.2011.2161027
    [10] LIN P, REN W, SONG Y. Distributed multi-agent optimization subject to nonidentical constraints and communication delays[J]. Automatica, 2016, 65: 120-131. doi: 10.1016/j.automatica.2015.11.014
    [11] KIA S S, CORTÉS J, MARTÍNEZ S. Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication[J]. Automatica, 2015, 55: 254-264. doi: 10.1016/j.automatica.2015.03.001
    [12] ZHAO Y, LIU Y F, WEN G H, et al. Distributed optimization for linear multiagent systems: Edge- and node-based adaptive designs[J]. IEEE Transactions on Automatic Control, 2017, 62(7): 3602-3609. doi: 10.1109/TAC.2017.2669321
    [13] LIN P, REN W.Distributed shortest distance consensus problem in multi-agent systems[C]//Proceedings of IEEE Conference on Decision and Control.Piscataway: IEEE Press, 2013: 4696-4701.
    [14] LIN P, REN W, SONG Y D, et al.Distributed optimization with the consideration of adaptivity and finite-time convergence[C]//Proceedings of 2014 American Control Conference.Piscataway: IEEE Press, 2014: 3177-3182.
    [15] LIN P, REN W, FARRELL J A. Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set[J]. IEEE Transactions on Automatic Control, 2017, 62(5): 2239-2253. doi: 10.1109/TAC.2016.2604324
    [16] NING B D, HAN Q L, ZUO Z Y. Distributed optimization for multiagent systems: An edge-based fixed-time consensus approach[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 122-132. doi: 10.1109/TCYB.2017.2766762
    [17] GODSIL C, ROYLE G. Algebraic graph theory[M]. Berlin: Springer, 2001.
    [18] FACCHINEI F, PANG J. Finite-dimensional variational inequalities and complementarity problems[M]. Berlin: Springer, 2003.
    [19] REN W, NATHAN S. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(2): 324-333. http://www.sciencedirect.com/science/article/pii/S0921889007001108
    [20] DING C, SHI C, CHEN Y. Nonsingular prescribed-time stabilization of a class of uncertain nonlinear systems: A novel coordinate mapping method[J]. International Journal of Robust and Nonlinear Control, 2020, 30(9): 3566-3581. doi: 10.1002/rnc.4949
    [21] CHEN F, CAO Y, REN W. Distributed average tracking of multiple time-varying reference signals with bounded derivatives[J]. IEEE Transactions on Automatic Control, 2012, 57(12): 3169-3174. doi: 10.1109/TAC.2012.2199176
  • 加载中
图(5)
计量
  • 文章访问数:  1171
  • HTML全文浏览量:  77
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-26
  • 录用日期:  2020-06-19
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答