留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双向电机驱动的四旋翼机动飞行控制

徐力昊 张宇 许斌

徐力昊, 张宇, 许斌等 . 基于双向电机驱动的四旋翼机动飞行控制[J]. 北京航空航天大学学报, 2021, 47(2): 373-381. doi: 10.13700/j.bh.1001-5965.2020.0221
引用本文: 徐力昊, 张宇, 许斌等 . 基于双向电机驱动的四旋翼机动飞行控制[J]. 北京航空航天大学学报, 2021, 47(2): 373-381. doi: 10.13700/j.bh.1001-5965.2020.0221
XU Lihao, ZHANG Yu, XU Binet al. Maneuvering flight control of QUAV based on bi-directional motor actuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 373-381. doi: 10.13700/j.bh.1001-5965.2020.0221(in Chinese)
Citation: XU Lihao, ZHANG Yu, XU Binet al. Maneuvering flight control of QUAV based on bi-directional motor actuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 373-381. doi: 10.13700/j.bh.1001-5965.2020.0221(in Chinese)

基于双向电机驱动的四旋翼机动飞行控制

doi: 10.13700/j.bh.1001-5965.2020.0221
基金项目: 

国家自然科学基金 61673341

国家自然科学基金 61933010

工业控制技术国家重点实验室自主课题 ICT1913

工业控制技术国家重点实验室开放课题 ICT20037

航空科学基金 20180753007

详细信息
    作者简介:

    徐力昊  男, 硕士研究生。主要研究方向: 空中机器人系统控制

    张宇  男, 博士, 副教授。主要研究方向: 基于多源信息融合的智能导航与定位、智能控制理论与技术、智能自主系统、人工智能

    许斌  男, 博士, 教授。主要研究方向: 智能控制与飞行控制等

    通讯作者:

    张宇. E-mail: zhangyu80@zju.edu.cn

  • 中图分类号: V221+.3;TB553

Maneuvering flight control of QUAV based on bi-directional motor actuation

Funds: 

National Natural Science Foundation of China 61673341

National Natural Science Foundation of China 61933010

Project of State Key Laboratory of Industrial Control Technology, China ICT1913

Open Research Project of State Key Laboratory of Industrial Control Technology, China ICT20037

Aeronautical Science Foundation of China 20180753007

More Information
  • 摘要:

    四旋翼飞行器(QUAV)的位置、姿态运动控制效果决定了其机动性。为了克服四旋翼系统欠驱动的缺陷,基于四元数表达对一种双向电机驱动的四旋翼进行了动力学建模,包括双向推力作用情况下的全向运动过程分析,并提出了一种姿态与位置控制器及控制分配矩阵设计方法。面向四旋翼的x-z平面模型,设定合理的参数和限制,使用最优规划方法提出了适用于新型四旋翼翻转、竖直等机动飞行轨迹的生成方法,其中推力与转矩都是实现时间最短的最优方案。搭建了包括电子调速器、电机、桨叶、机架等部件在内的详细的仿真试验环境。仿真试验的结果验证了双向电机驱动的四旋翼相比于传统四旋翼,能有效提高姿态跟踪与位置跟踪的精度,提升了飞行器的机动性。

     

  • 图 1  机体坐标系重心到电机中心的坐标变换

    Figure 1.  Coordinate transformation from the center of gravity axis to the center of motor axis

    图 2  稳定姿态的推力

    Figure 2.  Thrust graph under stable attitude

    图 3  滚转的推力

    Figure 3.  Thrust graph of roll

    图 4  偏航的推力

    Figure 4.  Thrust graph of yaw

    图 5  x-z平面四旋翼模型

    Figure 5.  Model of x-z plane quadrotor

    图 6  点到点的θu1u2及飞行轨迹

    Figure 6.  Trajectory graph of point-to-point with θ, u1, u2

    图 7  点到竖直悬停的θu1u2及飞行轨迹

    Figure 7.  Trajectory graph of point-vertical hover with θ, u1, u2

    图 8  翻转的θu1u2及飞行轨迹

    Figure 8.  Trajectory graph of flip with θ, u1, u2

    图 9  姿态角跟踪结果

    Figure 9.  Attitude angle tracking results

    图 10  高度跟踪结果

    Figure 10.  Height tracking results

    图 11  螺旋曲线轨迹跟踪结果

    Figure 11.  Tracking results of spiral curve

    表  1  系统参数与状态、输入限制

    Table  1.   System parameters, status and input limits

    系统参数 状态限制 输入限制
    m=0.5 kg
    J=3×10-3 kg·m2
    g=9.81 m/s2
    T=12 N
    T=1 N
    τ=0.2 N·m
    τ=-0.2 N·m
    下载: 导出CSV

    表  2  三个典型机动设计

    Table  2.   Design of three typical maneuvers

    机动 中间条件 结束条件
    点到点 pf=[xg  zg  0]T
    f=[0  0  0]T
    点到竖直悬停
    f=[0  0  0]T
    翻转 pf=[xg  0  π]T
    f=[0  0  0]T
    下载: 导出CSV

    表  3  两种模型与目标螺旋曲线轨迹之间误差的方差

    Table  3.   Variance of errors between two models and target spiral trajectory

    三轴目标轨迹函数 单向驱动 双向驱动
    x(t)=2sin(0.1t) 0.153 8 0.100 9
    y(t)=-2cos(0.1t) 0.062 0 0.014 8
    z(t)=0.1t 0.009 0 0.007 4
    下载: 导出CSV
  • [1] CUTLER M, HOW J P. Analysis and control of a variable-pitch quadrotor for agile flight[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(10): 101002. doi: 10.1115/1.4030676
    [2] GUPTA N, KOTHARI M.Flight dynamics and nonlinear control design for variable-pitch quadrotors[C]//2016 American Control Conference.Piscataway: IEEE Press, 2016: 3150-3155.
    [3] PAULOS J, YIM M.Flight performance of a swashplateless micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation.Piscataway: IEEE Press, 2015: 5284-5289.
    [4] PAULOS J, YIM M. Cyclic blade pitch control without a swashplate for small helicopter[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(3): 689-700. doi: 10.2514/1.G002683
    [5] BRESCIANINI D, D'ANDREA R.Design, modeling and control of an omni-directional aerial vehicle[C]//2016 IEEE International Conference on Robotics and Automation.Piscataway: IEEE Press, 2016: 3261-3266.
    [6] JIANG G, VOYLES R.Hexrotor UAV platform enabling dextrous interaction with structures-flight test[C]//2013 IEEE International Symposium on Safety, Security, and Rescue Robotics.Piscataway: IEEE Press, 2013: 14046745.
    [7] RYLL M. 6D interaction control with aerial robots: The flying end-effector paradigm[J]. International Journal of Robotics Research, 2019, 38(9): 1045-1062. doi: 10.1177/0278364919856694
    [8] TOMIC T, OTT C, HADDADIN S. External wrench estimation, collision detection, and reflex reaction for flying robots[J]. IEEE Transactions on Robotics, 2017, 33(6): 1467-1482. doi: 10.1109/TRO.2017.2750703
    [9] KUIPERS J.Quaternions and rotation sequences: A primer with applications to orbits, aerospace, and virtual reality[M].[S.l.]: Princeton University Press, 2002.
    [10] LUPASHIN S, SCHOELLIG A, SHERBACK M, et al.A simple learning strategy for high-specd quadrocopter multi-flips[C]//International Conference on Robotics and Automation.Piscataway: IEEE Press, 2010: 1642-1648.
    [11] FAESSLER M, FRANCHI A, SCARAMUZZA D. Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 620-626. doi: 10.1109/LRA.2017.2776353
    [12] YU Y, YANG S, WANG M, et al.High performance full attitude control of a quadrotor on SO(3)[C]//2015 IEEE International Conference on Robotics and Automation.Piscataway: IEEE Press, 2015: 1698-1703.
    [13] HAMEL T, MAHONY R.Dynamic modelling and configuration stabilization for an x4-flyer[C]//15th Triennial World Congress, 2002: 217-222.
    [14] GILLULA J, HUANG H, VITUS M, et al.Design of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice[C]//2010 IEEE International Conference on Robotics and Automation.Piscataway: IEEE Press, 2010: 1649-1654.
    [15] DARBY C, HAGER W, RAO A. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods, 2010, 32(4): 476-502. doi: 10.1002/oca.957
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  964
  • HTML全文浏览量:  63
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 录用日期:  2020-06-19
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答