-
摘要:
星基增强系统(SBAS)是向用户提供完好性信息的广域增强系统,涉及生命安全领域。为了提高SBAS系统的抗欺骗能力,基于椭圆曲线数字签名算法(ECDSA)提出面向北斗星基增强系统(BDSBAS)的电文认证设计方案。根据国内商用密码标准椭圆曲线(SM2)算法进行相应参数设计和电文排布方案,并描述了空中密钥更新(OTAR)的电文播发策略。为了进一步对试验方案进行验证,采用蒙特卡罗OTAR仿真器,基于3种播发调度算法进行仿真试验,通过调整权重对不同情况下OTAR电文接收时间进行分析。仿真结果为具体情况下OTAR电文方案播发调度的选择提供了重要参考依据。
-
关键词:
- 北斗星基增强系统(BDSBAS) /
- 电文认证 /
- 椭圆曲线数字签名算法(ECDSA) /
- 空中密钥更新(OTAR) /
- 播发策略
Abstract:Satellite-based Augmentation System (SBAS) relates to the field of life safety through a wide-area augmentation system that provides integrity information to users. To improve SBAS's ability to resist spoofing, firstly, based on the Elliptic Curve Digital Signature Algorithm (ECDSA), this paper proposes a message authentication design scheme for BeiDou Satellite-based Augmentation System (BDSBAS). According to the domestic commercial cryptographic standard elliptic curve (SM2) algorithm, the corresponding parameter design and message distribution scheme are carried out, and the message distribution strategy of Over the Air Rekeying (OTAR) is described. In order to further verify the test scheme, this paper uses Monte Carlo OTAR simulator to carry out simulation tests based on three broadcast scheduling algorithms. By adjusting the weights, the receiving time of OTAR messages in different situations is analyzed. The simulation results provide an important reference for the selection of broadcast scheduling of OTAR message schemes in specific situations.
-
表 1 NIST密码算法安全等级
Table 1. NIST cryptographic algorithm security level
安全等级/位 应用层级 2030年之前 2031年以后 < 112 应用 不可用 不可用 进程 存在风险 不可用 112 应用 可用 不可用 进程 可用 存在风险 128 应用/进程 可用 可用 192 应用/进程 可用 可用 256 应用/进程 可用 可用 表 2 关键性能指标
Table 2. Key performance indicators
核心指标 定义 指标数值/s TBA 表征2次认证的时间间隔 3 TTFA 表征第一次认证时间 6 MAL 表征最大认证延迟 4 ATTA 表征认证告警时间 0 表 3 OTAR播发内容
Table 3. OTAR broadcast content
OTAR电文
格式(OMT)定义 长度/bit OMT1 当前系统公钥 512 OMT2 OMT1的公钥证书 512 OMT3 下一个系统公钥 512 OMT4 OMT3的公钥证书 512 OMT5 当前系统公钥/公钥证书公钥到期声明 162 OMT6 OMT5的公钥证书 512 OMT7 当前公钥证书公钥 512 OMT8 OMT7的公钥证书 512 OMT9 下一个公钥证书公钥 512 OMT10 OMT9的公钥证书 512 OMT11-13 保留位置 表 4 评估指标
Table 4. Evaluation indicators
评估指标 当前系统公钥/公钥证书 全部OTAR 平均时间 表征接收OMT1和OMT2所需平均时间 表征接收全部OTAR电文所需平均时间 最大时间 表征接收OMT1和OMT2所需最大时间 表征接收全部OTAR电文所需最大时间 最小时间 表征接收OMT1和OMT2所需最小时间 表征接收全部OTAR电文所需最小时间 时间范围 表征接收OMT1和OMT2所需时间区间 表征接收全部OTAR电文所需时间区间 表 5 权重比对接收时间影响对比结果
Table 5. Comparison results of weight ratio on reception time
权重比
W1/Wr系统公钥
平均时间/s系统公钥
最大时间/s系统公钥
最小时间/sOTAR电文
平均时间/s100 58 123 24 187 101 36 57 24 317 102 28 48 24 725 103 25 45 24 2 025 104 24.5 45 24 5 896 表 6 调度算法对接收时间影响对比结果
Table 6. Comparison results of scheduling algorithms on reception time
调度算法 系统公钥平均时间/s 系统公钥最大时间/s 系统公钥最小时间/s OTAR电文平均时间/s PFQ 28 39 24 822 PFQ-Semi-Rigid 31 90 24 745 PFQ-Split 28 36 24 863 表 7 解调错误率对接收时间影响对比结果
Table 7. Comparison results of demodulation error rate on reception time
解调错误率PER 系统公钥平均时间/s 系统公钥最大时间/s 系统公钥最小时间/s OTAR电文平均时间/s 10-1 41 177 24 1 317 10-2 30 111 24 815 10-3 29 75 24 722 10-4 29 66 24 714 10-5 29 54 24 712 表 8 国内外方案结果对比
Table 8. Comparison of results of domestic and foreign programs
调度算法 系统公钥平均时间/s OTAR电文平均时间/s 本文 斯坦福 本文 斯坦福 PFQ 28 63.6 822 1 386 PFQ-Semi-Rigid 31 50.3 745 2 394 PFQ-Split 28 62.6 863 1 464 -
[1] CHIARA A D, BROI G D, POZZOBON O, et al. Authentication concepts for satellite-based augmentation systems[C]//Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2016), 2016: 3208-3221. [2] CHIARA A D, BROI G D, POZZOBON O, et al. SBAS authentication proposals and performance assessment[C]//Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2017), 2017: 2106-2116. [3] NEISH A, WALTER T, ENGE P. Parameter selection for the TESLA keychain[C]//Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation(ION GNSS+2018), 2018: 2155-2171. [4] NEISH A, WALTER T, ENGE P. Quantum-resistant authentication algorithms for satellite-based augmentation systems[J]. Navigation, 2019, 66(1): 199-209. doi: 10.1002/navi.287 [5] WU Z J, LIU R S, CAO H J. ECDSA-based message authentication scheme for BeiDou-II navigation satellite system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1666-1682. doi: 10.1109/TAES.2018.2874151 [6] NEISH A, WALTER T, POWELL J D. Design and analysis of a public key infrastructure for SBAS data authentication[J]. Navigation, 2019, 66(4): 831-844. doi: 10.1002/navi.338 [7] WU Z J, ZHANG Y, LIU R S. BD-II NMA & SSI: An scheme of anti-spoofing and open BeiDou II D2 navigation message authentication[J]. IEEE Access, 2020, 8: 23759-23775. doi: 10.1109/ACCESS.2020.2970203 [8] NEISH A, WALTER T, POWELL D, et al. SBAS data authentication: A concept of operations[C]//Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2019), 2019: 1812-1823. [9] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 信息安全技术SM2椭圆曲线公钥密码算法第1部分: 总则: GB/T 32918.1-2016[S]. 北京: 中国标准出版社, 2017.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Information security technology-Public key cryptographic algorithm SM2 based on elliptic curves-Part 1: General: GB/T 32918.1-2016[S]. Beijing: Standards Press of China, 2017(in Chinese). [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 信息安全技术SM2椭圆曲线公钥密码算法第2部分: 数字签名算法: GB/T 32918.2-2016[S]. 北京: 中国标准出版社, 2017.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Information security technology-Public key cryptographic algorithm SM2 based on elliptic curves-Part 2: Digital signature algorithm: GB/T 32918.2-2016[S]. Beijing: Standards Press of China, 2017(in Chinese). [11] 孙荣燕, 蔡昌曙, 周洲, 等. 国密SM2数字签名算法与ECDSA算法对比分析研究[J]. 网络安全技术与应用, 2013(2): 60-62. doi: 10.3969/j.issn.1009-6833.2013.02.021SUN R Y, CAI C S, ZHOU Z, et al. The comparision between digital signature based on SM2 and ECDSA[J]. Network Security Technology & Application, 2013(2): 60-62(in Chinese). doi: 10.3969/j.issn.1009-6833.2013.02.021 [12] 黄双临, 辛洁, 王冬霞, 等. 星基增强系统电文及播发特性研究[J]. 数字通信世界, 2019(2): 4-6. doi: 10.3969/J.ISSN.1672-7274.2019.02.002HUANG S L, XIN J, WANG D X, et al. Research on propagating message and strategy of satellite-based augmentation system[J]. Digital Communication World, 2019(2): 4-6(in Chinese). doi: 10.3969/J.ISSN.1672-7274.2019.02.002 [13] 申成良, 郭承军. 卫星导航信号电文加密技术研究与评估[J]. 全球定位系统, 2018, 43(3): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201803003.htmSHEN C L, GUO C J. Study and evaluation of GNSS signal cryptographic authentication defenses[J]. GNSS World of China, 2018, 43(3): 7-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201803003.htm [14] 梁曦, 陶晓霞, 周昀, 等. 星基增强系统导航电文及完好性信息研究[J]. 空间电子技术, 2016, 13(5): 39-42. doi: 10.3969/j.issn.1674-7135.2016.05.008LIANG X, TAO X X, ZHOU Y, et al. Research of SBAS navigation message and integrity message[J]. Space Electronic Technology, 2016, 13(5): 39-42(in Chinese). doi: 10.3969/j.issn.1674-7135.2016.05.008 [15] 汪朝晖, 张振峰. SM2椭圆曲线公钥密码算法综述[J]. 信息安全研究, 2016, 2(11): 972-982. https://www.cnki.com.cn/Article/CJFDTOTAL-XAQY201611003.htmWANG Z H, ZHANG Z F. Overview on public key cryptographic algorithm SM2 based on elliptic curves[J]. Journal of Information Security Research, 2016, 2(11): 972-982(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAQY201611003.htm [16] FERNÁNDEZ-HERN'NDEZ I, CHÂTRE E, DALLA CHIARA A, et al. Impact analysis of SBAS authentication[J]. Navigation, 2018, 65(4): 517-532. doi: 10.1002/navi.267 [17] BONELLI N, GIORDANO S, PROCISSI G. Network traffic processing with PFQ[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(6): 1819-1833. http://ieeexplore.ieee.org/document/7460204