留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IMU与UKF的船舶升沉运动信息测量方法

卢道华 付怀达 王佳 蔡雅轩 宋世磊

卢道华, 付怀达, 王佳, 等 . 基于IMU与UKF的船舶升沉运动信息测量方法[J]. 北京航空航天大学学报, 2021, 47(7): 1323-1331. doi: 10.13700/j.bh.1001-5965.2020.0223
引用本文: 卢道华, 付怀达, 王佳, 等 . 基于IMU与UKF的船舶升沉运动信息测量方法[J]. 北京航空航天大学学报, 2021, 47(7): 1323-1331. doi: 10.13700/j.bh.1001-5965.2020.0223
LU Daohua, FU Huaida, WANG Jia, et al. Measurement method of ship's heave motion information based on IMU and UKF algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1323-1331. doi: 10.13700/j.bh.1001-5965.2020.0223(in Chinese)
Citation: LU Daohua, FU Huaida, WANG Jia, et al. Measurement method of ship's heave motion information based on IMU and UKF algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1323-1331. doi: 10.13700/j.bh.1001-5965.2020.0223(in Chinese)

基于IMU与UKF的船舶升沉运动信息测量方法

doi: 10.13700/j.bh.1001-5965.2020.0223
基金项目: 

国家重点研发计划 2018YFC0309100

详细信息
    通讯作者:

    卢道华. E-mail: ludaohua_just@126.com

  • 中图分类号: U666.1

Measurement method of ship's heave motion information based on IMU and UKF algorithm

Funds: 

National Key R & D Program of China 2018YFC0309100

More Information
  • 摘要:

    为获取实时、精确的船舶升沉运动信息,根据船舶升沉运动模型和频谱分析方法,建立描述惯性测量单元(IMU)的加速度测量信息与船舶升沉运动状态量关系的解析模型。基于无迹卡尔曼滤波(UKF)算法非线性滤波的特点,进行升沉运动滤波解算。通过仿真分析证明了所提方法在船舶升沉运动测量中的有效性。利用三自由度平台升沉运动测量实验验证,结果表明,同一模型下,相比于扩展卡尔曼滤波(EKF)算法的解算结果,所提方法具有更快的收敛速度和更高的测量精度;对船舶升沉位移的估计精度达到最大升沉幅值的5%,可以得到精确、无时延的船舶升沉运动信息。

     

  • 图 1  船舶升沉运动测量原理

    Figure 1.  Schematic diagram of ship's heave motion measurement

    图 2  捷联解算船舶升沉位移

    Figure 2.  Strapdown calculation of ship heave displacement

    图 3  船舶升沉运动估计算法流程

    Figure 3.  Ship heave motion estimation algorithm flowchart

    图 4  模拟船舶升沉运动幅频曲线

    Figure 4.  Amplitude frequency curve of simulatedship heave motion

    图 5  升沉加速度仿真数据

    Figure 5.  Simulation data of heave acceleration

    图 6  升沉加速度零偏估计仿真结果

    Figure 6.  Simulation results of zero bias estimation of heave acceleration

    图 7  升沉速度测量仿真结果

    Figure 7.  Simulation results of heave speed measurement

    图 8  升沉位移测量仿真结果

    Figure 8.  Simulation results of heave displacement measurement

    图 9  升沉运动信息测量实验装置

    Figure 9.  Heave motion information measuring experimental device

    图 10  升沉加速度

    Figure 10.  Heave acceleration

    图 11  升沉速度滤波标准差

    Figure 11.  Standard deviation of heave motion speed filter

    图 12  升沉位移滤波标准差

    Figure 12.  Standard deviation of heave motion displacement filter

    图 13  升沉速度测量实验结果

    Figure 13.  Experimental results of heave speed measurement

    图 14  升沉位移测量实验结果

    Figure 14.  Experimental results of heave displacementmeasurement

    图 15  升沉位移估计误差

    Figure 15.  Heave displacement estimation error

  • [1] RICHTER M, SCHNEIDER K, WALSER D, et al. Real-time heave motion estimation using adaptive filtering techniques[J]. IFAC Proceedings Volumes, 2014, 47(3): 10119-10125. doi: 10.3182/20140824-6-ZA-1003.00111
    [2] 黄卫权, 李智超, 卢曼曼. 基于BMFLC算法的船舶升沉测量方法[J]. 系统工程与电子术, 2017, 39(12): 159-164.

    HUANG W Q, LI Z C, LU M M. Method of measurement for ship heave motion based on BMFLC algorithm[J]. Systems Engineering and Electronics, 2017, 39(12): 159-164(in Chinese).
    [3] 孙伟, 孙枫. 基于惯导解算的舰船升沉测量技术[J]. 仪器仪表学报, 2012, 33(1): 162-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201201025.htm

    SUN W, SUN F. Measurement technology of ship heave movement based on SINS resolving[J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 162-172(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201201025.htm
    [4] 刘星伯. 基于捷联航姿系统的舰船瞬时线运动信息测量研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.

    LIU X B. Study on the measuring of the instaneous movements of the ships based on SINS[D]. Harbin: Harbin Engineering University, 2009(in Chinese).
    [5] 秦永元. 卡尔曼滤波与组合导航原理[M]. 3版. 西安: 西北工业大学出版社, 2015: 199-220.

    QIN Y Y. Kalman filtering and integrated navigation principle[M]. 3rd ed. Xi'an: Northwestern Polytechnical University Press, 2015: 199-220(in Chinese).
    [6] JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear systems[C]//American Control Conference, 1995: 1628-1632.
    [7] JULIER S J. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422. doi: 10.1109/JPROC.2003.823141
    [8] GODHAVN J M. High quality heave measurements based on GPS RTK and accelerometer technology[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Piscataway: IEEE Press, 2000: 309-314.
    [9] HU Y P, TAO L M. Real-time zero phase filtering for heave measurement[C]//The 11th IEEE International Conference on Electronic Measurement & Instruments. Piscataway: IEEE Press, 2013: 321-326.
    [10] 严恭敏, 苏幸君, 翁浚, 等. 基于惯导和无时延滤波器的船舶升沉测量[J]. 导航定位学报, 2016, 4(2): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201602019.htm

    YAN G M, SU X J, WENG J, et al. Measurement of ship's heave motion based on INS and zero-phase-delay digital filter[J]. Journal of Navigation and Positioning, 2016, 4(2): 91-93(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201602019.htm
    [11] 袁书明, 程建华, 马斌. 基于自适应频率估计的船舶瞬时线运动测量方法[J]. 中国惯性技术学报, 2016, 24(5): 565-570. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201605002.htm

    YUAN S M, CHENG J H, MA B. Measurement method for ship instantaneous linear movement based on adaptive frequency estimation[J]. Journal of Chinese Inertial Technology, 2016, 24(5): 565-570(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201605002.htm
    [12] KVCHLER S, EBERHARTER J K, LANGER K, et al. Heave motion estimation of a vessel using acceleration measurements[J]. IFAC Proceedings Volumes, 2011, 44(1): 14742-14747. doi: 10.3182/20110828-6-IT-1002.01935
    [13] 刘婉婷. 船舶升沉运动预报研究[D]. 大连: 大连海事大学, 2016.

    LIU W T. Study on heave motion prediction of ships[D]. Dalian: Dalian Maritime University, 2016(in Chinese).
    [14] 李智超. 基于惯导系统的舰船升沉测量技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    LI Z C. Research on ship heave measurement technology based on inertial navigation system[D]. Harbin: Harbin Engineering University, 2018(in Chinese).
    [15] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 222-224.

    YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 222-224(in Chinese).
    [16] 刘萍. 基于MEMS的高精度姿态检测系统设计[D]. 哈尔滨: 哈尔滨工程大学, 2016: 11-21.

    LIU P. Design of high precision attitude detection system based on MEMS[D]. Harbin: Harbin Engineering University, 2016: 11-21(in Chinese).
    [17] 袁赣南, 张涛. 四元数UKF超紧密组合导航滤波方法[J]. 北京航空航天大学学报, 2010, 36(7): 762-766. https://bhxb.buaa.edu.cn/CN/abstract/abstract8434.shtml

    YUAN G N, ZHANG T. Quaternion unscented Kalman filtering for ultra-tight integration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 762-766(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract8434.shtml
  • 加载中
图(15)
计量
  • 文章访问数:  1035
  • HTML全文浏览量:  198
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 录用日期:  2020-08-21
  • 网络出版日期:  2021-07-20

目录

    /

    返回文章
    返回
    常见问答