留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的深度神经网络下遥感机场区域目标检测

韩永赛 马时平 何林远 李承昊 朱明明 许悦雷

韩永赛, 马时平, 何林远, 等 . 改进的深度神经网络下遥感机场区域目标检测[J]. 北京航空航天大学学报, 2021, 47(7): 1470-1480. doi: 10.13700/j.bh.1001-5965.2020.0225
引用本文: 韩永赛, 马时平, 何林远, 等 . 改进的深度神经网络下遥感机场区域目标检测[J]. 北京航空航天大学学报, 2021, 47(7): 1470-1480. doi: 10.13700/j.bh.1001-5965.2020.0225
HAN Yongsai, MA Shiping, HE Linyuan, et al. Regional object detection of remote sensing airport based on improved deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1470-1480. doi: 10.13700/j.bh.1001-5965.2020.0225(in Chinese)
Citation: HAN Yongsai, MA Shiping, HE Linyuan, et al. Regional object detection of remote sensing airport based on improved deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1470-1480. doi: 10.13700/j.bh.1001-5965.2020.0225(in Chinese)

改进的深度神经网络下遥感机场区域目标检测

doi: 10.13700/j.bh.1001-5965.2020.0225
基金项目: 

国家自然科学基金 61701524

国家自然科学基金 61773397

航空科学基金 20175896022

详细信息
    通讯作者:

    马时平, E-mail: 1013765061@qq.com

  • 中图分类号: TP183;TP751.1

Regional object detection of remote sensing airport based on improved deep neural network

Funds: 

National Natural Science Foundation of China 61701524

National Natural Science Foundation of China 61773397

Aeronautical Science Foundation of China 20175896022

More Information
  • 摘要:

    卫星遥感监测器下的机场区域多类目标检测在实际生活中有着重大的军用和民用意义。为了有效提升机场区域遥感图片的检测精确率,以主流目标检测方法中更快的区域卷积神经网络(Faster R-CNN)为基础框架,针对数据侧提出了ReMD数据增强算法。同时使用更具深度的残差神经网络(ResNet)以及特征融合部件-特征金字塔网络(FPN)来提取机场区域目标更鲁棒的深层区分性特征。在末端检测网络添加新的全连接层并根据目标的类间关联性组合softmax分类器以及4个logistic regression分类器进行机场区域多类目标的精确分类。实验结果表明:相比原网络改进后的网络带来了11.6%的多类平均检测精确率的提升,达到了80.5%的mAP,与其他主流网络进行对比也有更好的精确率;同时通过适当减小建议区域的输入量,可以在降低3.2%精确率的前提下将0.512 s的检测时间提速3倍,至0.173 s,根据具体任务可以合理权衡精确率和检测速度,体现了该网络的有效性以及实用性。

     

  • 图 1  机场区域目标检测示意图

    Figure 1.  Schematic diagram of airport area target detection

    图 2  “跳层连接”示意图

    Figure 2.  Schematic diagram of "layer jump connection"

    图 3  FPN特征融合检测示意图

    Figure 3.  Schematic diagram of FPN feature fusion detection

    图 4  数据集示意图

    Figure 4.  Schematic diagram of data set

    图 5  ReMD效果示意图

    Figure 5.  Schematic diagram of ReMD effect

    图 6  新型末端检测器示意图

    Figure 6.  Schematic diagram of new end detector

    图 7  机场区域目标检测效果示意图

    Figure 7.  Schematic diagram of object detection effect in airport area

    图 8  对比实验结果示意图

    Figure 8.  Schematic diagram of comparative experiment results

    表  1  目标-标签对应表

    Table  1.   Object-label correspondence table

    目标 airport civil airplane transport plane fighter helicopter bridge oil tank
    标签 airport airplane_mh airplane_y airplane_z airplane_zs bridge oil tank
    下载: 导出CSV

    表  2  目标-类别号对应表

    Table  2.   Object-number correspondence table

    目标
    标签
    airplane airport
    airport
    bridge
    bridge
    oil tank
    oil tank
    civil airplane
    airplane_mh
    类别号 1 2 3 4 5
    目标 transport
    plane
    fighter helicopter background
    标签 airplane_y airplane_z airplane_zs
    类别号 6 7 8 0
    下载: 导出CSV

    表  3  各数据增强算法效果

    Table  3.   Effect of each data enhancement algorithm

    数据增强算法 各算法使用情况
    Spin
    Mirror
    Scaling
    Pan
    Brightness Change
    Crop
    Gaussian Noise
    ReMD(proposed)
    mAP/% 68.9 69.4 69.8 69.9 70.4 71.1 71.3 72.6
    下载: 导出CSV

    表  4  基础网络对比实验结果

    Table  4.   Comparison of experiment results of basic network

    模型 mAP/% Average IOU
    ZFNet 58.4 0.392
    VGG_CNN_M_1024 63.5 0.425
    VGG-16 72.6 0.566
    VGG-19 73.9 0.571
    ResNet-50 74.1 0.572
    ResNet-101 75.8 0.574
    ResNet-50+FPN 78.9 0.643
    ResNet-101+FPN 80.2 0.645
    下载: 导出CSV

    表  5  加入新型末端检测器前后对比实验结果

    Table  5.   Comparison of experiment results before and after adding the new end detector

    网络 AP/% mAP/%
    airport bridge oil tank Civil airplane Transport plane fighter helicopter
    T1 89.7 75.8 76.9 89.6 78.5 72.0 78.9 80.2
    T2 89.8 75.9 76.9 90.1 79.1 72.6 79.4 80.5
    下载: 导出CSV

    表  6  各检测部件与所带来的时间成本

    Table  6.   Summary of each testing component and time cost

    Faster R-CNN网络及增加的部件 原网络 ReMD ResNet-101 FPN N2 N1
    检测时间/s 0.215 0.215 0.483 0.510 0.512 0.217
    Δt/s 0 0 0.268 0.027 0.002 0.002
    下载: 导出CSV

    表  7  不同检测网络间的对比实验结果

    Table  7.   Comparison of experiment results between different detection networks

    算法 mAP/% 检测时间/s
    R-CNN 54.2 >10.000
    SPP-Net 54.9 0.401
    Faster R-CNN 68.9 0.215
    HyperNet 72.0 0.160
    R-FCN 75.2 0.167
    YOLOv3 76.3 0.122
    SSD 73.9 0.165
    Ref.[30] 80.2 0.602
    Ref.[16] 70.3 0.215
    proposed 80.5 0.512
    proposed* 77.3 0.173
    注:proposed*表示将RPN末端生成的proposal数量减少到50(原设为300)。
    下载: 导出CSV
  • [1] RICHARDS J R. Remote sensing digital image analisis[M]. Berlin: Springer, 1999: 20-21.
    [2] 杨四海, 陈锻生, 谢维波. Hough变换的特性分析: 一种全局观点[J]. 计算机辅助设计与图形学学报, 2006, 18(8): 1197-1204. doi: 10.3321/j.issn:1003-9775.2006.08.020

    YANG S H, CHEN D S, XIE W B. Characteristics of hough transform: A global view[J]. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(8): 1197-1204(in Chinese). doi: 10.3321/j.issn:1003-9775.2006.08.020
    [3] 梁浩然. 自然图像的视觉显著性特征分析与检测方法及其应用研究[D]. 杭州: 浙江工业大学, 2016: 16-17.

    LIANG H R. Research on saliency detection of natural image and its application[D]. Hangzhou: Zhejiang University of Technology, 2016: 16-17(in Chinese).
    [4] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
    [5] LI W, XIANG S M, WANG H B, et al. Robust airplane detection in satellite images[C]//2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2011: 2821-2824.
    [6] 林煜东, 和红杰, 尹忠科, 等. 基于稀疏表示的可见光遥感图像飞机检测算法[J]. 光子学报, 2014, 43(9): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201409039.htm

    LIN Y D, HE H J, YIN Z K, et al. Airplane detection in optical remote sensing image based on sparse-representation[J]. Acta Photonica Sinica, 2014, 43(9): 196-201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201409039.htm
    [7] 仇建斌, 李士进, 王玮. 角点与边缘信息相结合的遥感图像飞机检测新方法[J]. 微电子学与计算机, 2011, 28(9): 214-216. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201109057.htm

    QIU J B, LI S J, WANG W. A new approach to detect aircrafts in remote sensing images based on corner and edge information fusion[J]. Microelectronics & Computer, 2011, 28(9): 214-216(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201109057.htm
    [8] AN Z Y, SHI Z W, TENG X C, et al. An automated airplane detection system for large panchromatic image with high spatial resolution[J]. Optik, 2014, 125(12): 2768-2775. doi: 10.1016/j.ijleo.2013.12.003
    [9] ZHANG P, NIU X, DOU Y, et al. Airport detection on optical satellite images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1183-1187. doi: 10.1109/LGRS.2017.2673118
    [10] ZHU T H, LI Y H, YE Q K, et al. Integrating saliency and ResNet for airport detection in large-size remote sensing images[C]//20172nd International Conference on Image, Vision and Computing (ICIVC). Piscataway: IEEE Press, 2017: 20-25.
    [11] CHEN X Y, XIANG S M, LIU C L, et al. Aircraft detection by deep belief nets[C]//20132nd IAPR Asian Conference on Pattern Recognition. Piscataway: IEEE Press, 2013: 54-58.
    [12] WU H, ZHANG H, ZHANG J F, et al. Fast aircraft detection in satellite images based on convolutional neural networks[C]//2015 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2015: 4210-4214.
    [13] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [14] 戴陈卡, 李毅. 基于Faster RCNN以及多部件结合的机场场面静态飞机检测[J]. 计算机应用, 2017, 37(S2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2021.htm

    DAI C K, LI Y. Aeroplane detection in static aerodrome based on Faster RCNN and multi-part model[J]. Journal of Computer Applications, 2017, 37(S2): 85-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2021.htm
    [15] 朱明明, 许悦雷, 马时平, 等. 基于特征融合与软判决的遥感图像飞机检测[J]. 光学学报, 2019, 39(2): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201902009.htm

    ZHU M M, XU Y L, MA S P, et al. Airplane detection based on feature fusion and soft decision in remote sensing images[J]. Acta Optica Sinica, 2019, 39(2): 71-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201902009.htm
    [16] CHEN F, REN R L, VAN DE VOORDE T, et al. Fast automatic airport detection in remote sensing images using convolutional neural networks[J]. Remote Sensing, 2018, 10(3): 443. doi: 10.3390/rs10030443
    [17] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [18] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[M]//Computer Vision-ECCV 2014. Berlin: Springer, 2014: 818-833.
    [19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 121-124.
    [20] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1-9.
    [21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
    [22] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944.
    [23] EVERINGHAM M, GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. doi: 10.1007/s11263-009-0275-4
    [24] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2019-07-18]. https://arxiv.org/abs/1804.02767.
    [25] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [26] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [27] KONG T, YAO A B, CHEN Y R, et al. HyperNet: Towards accurate region proposal generation and joint object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 845-853.
    [28] DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]//Neural Information Processing Systems. Piscataway: IEEE Press, 2016: 379-387.
    [29] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Berlin: Springer, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2
    [30] SHRIVASTAVA A, SUKTHANKAR R, MALIK J, et al. Beyond skip connections: Top-down modulation for object detection[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 256-266.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  152
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 录用日期:  2020-08-21
  • 网络出版日期:  2021-07-20

目录

    /

    返回文章
    返回
    常见问答