留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电周期板中耦合禁带影响规律分析

姜周 李琳 范雨 王文君

姜周, 李琳, 范雨, 等 . 压电周期板中耦合禁带影响规律分析[J]. 北京航空航天大学学报, 2021, 47(7): 1422-1437. doi: 10.13700/j.bh.1001-5965.2020.0230
引用本文: 姜周, 李琳, 范雨, 等 . 压电周期板中耦合禁带影响规律分析[J]. 北京航空航天大学学报, 2021, 47(7): 1422-1437. doi: 10.13700/j.bh.1001-5965.2020.0230
JIANG Zhou, LI Lin, FAN Yu, et al. Influence analysis of coupled band gap in piezoelectric periodic plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1422-1437. doi: 10.13700/j.bh.1001-5965.2020.0230(in Chinese)
Citation: JIANG Zhou, LI Lin, FAN Yu, et al. Influence analysis of coupled band gap in piezoelectric periodic plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1422-1437. doi: 10.13700/j.bh.1001-5965.2020.0230(in Chinese)

压电周期板中耦合禁带影响规律分析

doi: 10.13700/j.bh.1001-5965.2020.0230
基金项目: 

国家自然科学基金 51675022

国家自然科学基金 11702011

航空科学基金 2019ZB051002

详细信息
    通讯作者:

    范雨. E-mail: fanyu04@buaa.edu.cn

  • 中图分类号: V241.8

Influence analysis of coupled band gap in piezoelectric periodic plate

Funds: 

National Natural Science Foundation of China 51675022

National Natural Science Foundation of China 11702011

Aeronautical Science Foundation of China 2019ZB051002

More Information
  • 摘要:

    近年来,利用周期结构中弹性波禁带特性减振的研究思路受到了广泛关注。针对以往周期结构难以实现宽频且可调禁带的问题,设计了一种含电路网络的压电周期结构。该结构中的弯曲波和电路网络中的电波通过压电效应可以产生一个较宽的耦合禁带,且通过调整电路参数就可以达到调节禁带位置的目的。首先,为了高效计算该结构的波动特性,开发了适用于压电周期结构的减缩波有限元算法,该算法可以在保证结果准确性的基础上节约90%以上的计算时间。利用该算法研究了压电材料尺寸和形状对耦合禁带性能的影响。结果表明:相同电学参数下,随着压电片尺寸的增大,耦合禁带向低频移动,且禁带带宽增加;相同面积下含圆形和方形压电片的机电系统内耦合禁带差异较小,即形状对耦合禁带的分布影响不大。其次,针对不同尺寸和形状的机电系统,设计了电学参数使得在同一频率附近产生耦合禁带,并分析了其性能差异。最后,为了证明耦合禁带的减振效果,设计了一种有限压电周期板模型,其强迫响应的结果证明了耦合禁带对结构内弹性波可以进行有效调控。

     

  • 图 1  压电网络板及元胞示意图

    Figure 1.  Illustration of plate with piezoelectric network and its unit cell

    图 2  含正方形压电片元胞有限元模型

    Figure 2.  Finite element model of unit cell with square lead zirconate titanate patch

    图 3  未加电路时系统传播常数分布

    Figure 3.  Distribution of system propagation constants without circuits

    图 4  αf=5时减缩前后频散曲线对比

    Figure 4.  Comparison of frequency dispersion curves with/without reduction when αf=5

    图 5  700 Hz下各行波波形

    Figure 5.  Wave shapes of propagation waves at 700 Hz

    图 6  各频率下模型1内波1减缩前后误差

    Figure 6.  Errors of wave 1 with/without reduction in model 1 at different frequency

    图 7  αf=3时减缩前后传播常数对比

    Figure 7.  Comparison of propagation constants with/without reduction when αf=3

    图 8  αf=5时只考虑弯曲模态减缩前后传播常数对比

    Figure 8.  Comparison of propagation constants with/without reduction when αf=5 with only bending modes considered

    图 9  电波和弯曲波占比分布

    Figure 9.  Distribution for RSWf and RSWe

    图 10  LP=20 mm时频散曲线

    Figure 10.  Frequency dispersion curves when LP=20 mm

    图 11  LP=20 mm时禁带方向性分布

    Figure 11.  Directional distribution of band gaps when LP=20 mm

    图 12  LP=35 mm时禁带方向性分布

    Figure 12.  Directional distribution of band gaps when LP=35 mm

    图 13  LP=40 mm时禁带方向性分布

    Figure 13.  Directional distribution of band gaps when LP=40 mm

    图 14  LP=45 mm时禁带方向性分布

    Figure 14.  Directional distribution of band gaps when LP=45 mm

    图 15  LP=50 mm时禁带方向性分布

    Figure 15.  Directional distribution of band gaps with LP=50 mm

    图 16  含圆形压电片元胞有限元模型

    Figure 16.  Finite element model of unit cell with circular lead zirconate titanate patch

    图 17  DP=22.57 mm时频散曲线

    Figure 17.  Frequency dispersion curves with DP=22.57 mm

    图 18  DP=22.57 mm时耦合禁带方向性对比

    Figure 18.  Comparison of directional distribution for coupled band gaps with DP=22.57 mm

    图 19  DP=39.49 mm时禁带方向性分布

    Figure 19.  Directional distribution of band gaps with DP=39.49 mm

    图 20  DP=45.14 mm时耦合禁带方向性对比

    Figure 20.  Comparison of directional distribution for coupled band gaps with DP=45.14 mm

    图 21  DP=50.78 mm时耦合禁带方向性对比

    Figure 21.  Comparison of directional distribution for coupled band gaps with DP=50.78 mm

    图 22  情况1时耦合禁带方向性对比

    Figure 22.  Comparison of directional distribution for coupled band gaps with configuration 1

    图 23  情况4时耦合禁带方向性对比

    Figure 23.  Comparison of directional distribution for coupled band gaps with configuration 4

    图 24  耦合禁带边界频率对比

    Figure 24.  Comparison of boundary frequencies for coupled band gaps

    图 25  强迫响应计算模型

    Figure 25.  Calculation model for forced response

    图 26  1 140 Hz下强迫响应计算结果

    Figure 26.  Forced response calculation results at 1 140 Hz

    图 27  不同情况下强迫响应能量结果对比

    Figure 27.  Comparison of forced response energy results in different situations

    图 28  不同情况下能量云图对比

    Figure 28.  Distribution of kinetic energy in different situations

    表  1  压电片材料参数

    Table  1.   Material parameters of piezoelectric patches

    参数 数值
    ρp/(kg·m-3) 7 500
    s11E/(m2·N-1) 13×10-12
    s12E/(m2·N-1) -4.29×10-12
    s55E/(m2·N-1) 22×10-12
    d31/(C·N-1) -1.86×10-10
    ε33T/(F·m-1) 3.009×10-8
    下载: 导出CSV

    表  2  减缩模型对比

    Table  2.   Comparison between full model and reduced model

    模型对比 计算时间/s 矩阵规模 自由度数
    完整模型 2 843.17 8 365×8 365 1 175
    减缩模型 227.98 313×313 297
    增益/% 91.98 96.25 74.72
    下载: 导出CSV

    表  3  压电片结构参数

    Table  3.   Structural parameters of piezoelectric patches

    情况编号 长度/mm 直径/mm 电感/H 覆盖率/%
    1 20 22.567 6 0.319 6.25
    2 35 39.493 3 0.1 19.14
    3 40 45.135 2 0.078 25.00
    4 45 50.777 1 0.060 6 31.64
    5 50 56.419 0 0.051 2 39.06
    注:表中覆盖率为压电片面积与基板总面积之比。
    下载: 导出CSV
  • [1] HUSSEIN M I, LEAMY M J, RUZZENE M. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 1-38. http://adsabs.harvard.edu/abs/2014ApMRv..66d0802H
    [2] 张荣英, 姜根山, 王璋奇, 等. 声子晶体的研究进展及应用前景[J]. 声学技术, 2006, 25(1): 35-42. doi: 10.3969/j.issn.1000-3630.2006.01.009

    ZHANG R Y, JIANG G S, WANGE Z Q, et al. Progress in researches of phononic crystal and the application perspectives[J]. Technical Acoustics, 2006, 25(1): 35-42(in Chinese). doi: 10.3969/j.issn.1000-3630.2006.01.009
    [3] ROCA D, YAGO D, CANTE J, et al. Computational design of locally resonant acoustic metamaterials[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345(1): 161-182.
    [4] NING L, WANG Y Z, WANG Y S, et al. Active control of elastic metamaterials consisting of symmetric double Helmholtz resonator cavities[J]. International Journal of Mechanical Sciences, 2019, 153-154: 287-298. doi: 10.1016/j.ijmecsci.2019.02.007
    [5] PELAT A, GALLOT T, GAUTIER F. On the control of the first Bragg band gap in periodic continuously corrugated beam for flexural vibration[J]. Journal of Sound and Vibration, 2019, 446: 249-262. doi: 10.1016/j.jsv.2019.01.029
    [6] FAN Y, COLLET M, ICHCHOU M, et al. Energy flow prediction in built-up structures through a hybrid finite element/wave and finite element approach[J]. Mechanical Systems and Signal Processing, 2016, 66-67(1): 137-158. http://www.sciencedirect.com/science/article/pii/S0888327015002356
    [7] QI S, OUDICH M, LI Y, et al. Acoustic energy harvesting based on a planar acoustic metamaterial[J]. Applied Physics Letters, 2016, 108(26): 1-4. doi: 10.1063/1.4954987
    [8] WU Y G, LI L, FAN Y, et al. Design of dry friction and piezoelectric hybrid ring dampers for integrally bladed disks based on complex nonlinear modes[J]. Computers and Structures, 2020, 233: 1-19. http://www.sciencedirect.com/science/article/pii/S0045794920300407
    [9] WEN S R, XIONG Y H, HAO S M, et al. Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections[J]. International Journal of Mechanical Sciences, 2020, 166: 1-10. http://www.sciencedirect.com/science/article/pii/S002074031932332X
    [10] MOSCATELLI M, ARDITO R, DRIEMEIER L, et al. Band-gap structure in two- and three-dimensional cellular locally resonant materials[J]. Journal of Sound and Vibration, Academic Press, 2019, 454(18): 73-84. http://www.sciencedirect.com/science/article/pii/S0022460X1930238X
    [11] LI L, JIANG Z, FAN Y, et al. Creating the coupled band gaps in piezoelectric composite plates by interconnected electric impedance[J]. Materials, 2018, 11(9): 1656. doi: 10.3390/ma11091656
    [12] 舒海生, 张法, 刘少刚, 等. 一种特殊的布拉格型声子晶体杆振动带隙研究[J]. 振动与冲击, 2014, 33(19): 147-151.

    SHU H S, ZHANG F, LIU S G, et al. Vibration band gap of a special rod of phononic crystals[J]. Journal of Vibration and Shock, 2014, 33(19): 147-151(in Chinese).
    [13] 舒海生, 董立强, 李世丹, 等. 布拉格型声子晶体弦的横向振动带隙研究[J]. 人工晶体学报, 2013, 42(9): 1918-1923. doi: 10.3969/j.issn.1000-985X.2013.09.036

    SHU H S, DONG L Q, LI S D, et al. Study on the lateral band gap of string of phononic crystals[J]. Journal of Synthetic Crystals, 2013, 42(9): 1918-1923(in Chinese). doi: 10.3969/j.issn.1000-985X.2013.09.036
    [14] 张若军, 肖勇, 温激鸿, 等. 四边固支局域共振型板的低频隔声特性研究[J]. 振动工程学报, 2016, 29(5): 905-912.

    ZHANG R J, XIAO Y, WEN J H, et al. Analysis of sound transmission through clamped locally resonant plate in low frequency[J]. Journal of Vibration Engineering, 2016, 29(5): 905-912(in Chinese).
    [15] LIU L, HUSSEIN M I. Wave motion in periodic flexural beams and characterization of the transition between bragg scattering and local resonance[J]. Journal of Applied Mechanics, 2012, 79(1): 1-17. http://adsabs.harvard.edu/abs/2012jam....79a1003l
    [16] XIAO Y, WEN J, WANG G, et al. Theoretical and experimental study of locally resonant and bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators[J]. Journal of Vibration and Acoustics, 2013, 135(4): 1-17. http://d.wanfangdata.com.cn/periodical/0f612b20926d3f742f35f67e5aeaf7aa
    [17] DONG Y, YAO H, DU J, et al. Research on local resonance and Bragg scattering coexistence in phononic crystal[J]. Modern Physics Letters B, 2017, 31(11): 1-10. doi: 10.1142/S0217984917501275
    [18] CAI C, WANG Z, CHU Y, et al. The phononic band gaps of Bragg scattering and locally resonant pentamode metamaterials[J]. Journal of Physics D: Applied Physics, 2017, 50(41): 1-7. http://smartsearch.nstl.gov.cn/paper_detail.html?id=255f79f12b5ef56b596e8c7e7e8261ef
    [19] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
    [20] 朱兴一, 钟盛, 叶安珂, 等. 声子晶体禁带特性及局域共振现象的试验研究[J]. 人工晶体学报, 2014(11): 2852-2859. doi: 10.3969/j.issn.1000-985X.2014.11.016

    ZHU X Y, ZHONG S, YE A K, et al. Experimental study on band gap properties and local resonance phenomenon of phononic crystals[J]. Journal of Synthetic Crystals, 2014(11): 2852-2859(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.11.016
    [21] LEE T, IIZUKA H. Bragg scattering based acoustic topological transition controlled by local resonance[J]. Physical Review B, 2019, 99(6): 1-11. doi: 10.1103/PhysRevB.99.064305
    [22] MANCONI E, MACE B. Veering and strong coupling effects in structural dynamics[J]. Journal of Vibration and Acoustics, 2017, 139(2): 1-10. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8334de14171b2e15e571c9b81cf65ab5
    [23] MACE B R, MANCONI E. Wave motion and dispersion phenomena: Veering, locking and strong coupling effects[J]. The Journal of the Acoustical Society of America, 2012, 131(2): 1015-1028. doi: 10.1121/1.3672647
    [24] THOMPSON D J, FERGUSON N S, YOO J W, et al. Structural waveguide behaviour of a beam-plate system[J]. Journal of Sound and Vibration, 2008, 318(1): 206-226. http://www.sciencedirect.com/science/article/pii/S0022460X08003374
    [25] YU D, WEN J, ZHAO H, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J]. Journal of Sound and Vibration, 2008, 318(1): 193-205. http://www.sciencedirect.com/science/article/pii/S0022460X08003386
    [26] LIU J, LI L, FAN Y. A comparison between the friction and piezoelectric synchronized switch dampers for blisks[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(12): 2693-2705. doi: 10.1177/1045389X18778360
    [27] LIU J, LI L, HUANG X, et al. Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor[J]. Mechanical Systems and Signal Processing, 2017, 95: 425-445. doi: 10.1016/j.ymssp.2017.03.049
    [28] YE G, YAN J, WONG Z J, et al. Optimisation of a piezoelectric system for energy harvesting from traffic vibrations[C]//Proceedings of the IEEE Ultrasonics Symposium. Piscataway: IEEE Press, 2009: 759-762.
    [29] WANG W, LI L, FAN Y, et al. Piezoelectric transducers for structural health monitoring of joint structures in cylinders: A wave-based design approach[J]. Sensors, 2020, 20(3): 1-25. doi: 10.1109/JSEN.2020.2964488
    [30] LI L, JIANG Z, FAN Y, et al. Coupled band gaps in the piezoelectric composite plate with interconnected electric impedance[C]//ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2018: 1-27.
    [31] MEITZLER A H, BERLINCOURT D, WELSH F S, et al. IEEE standard on piezoelectricity: ANSI/IEEE Std 176-1987[S]. Piscataway: IEEE Press, 1988.
    [32] CHEN S, WANG G, SONG Y. Low-frequency vibration isolation in sandwich plates by piezoelectric shunting arrays[J]. Smart Materials and Structures, 2016, 25(12): 1-8. http://smartsearch.nstl.gov.cn/paper_detail.html?id=59bad19b8326eb9789ce6d6cb1e65461
    [33] WANG G, CHEN S. Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier-resonator feedback circuits[J]. Smart Materials and Structures, 2015, 25(1): 1-15. http://adsabs.harvard.edu/abs/2016SMaS...25a5004W
    [34] DUHAMEL D, MACE B R, BRENNAN M J. Finite element analysis of the vibrations of waveguides and periodic structures[J]. Journal of Sound and Vibration, 2006, 294(1): 205-220. http://www.sciencedirect.com/science/article/pii/S0022460X05007194
    [35] FAN Y, COLLET M, ICHCHOU M, et al. A wave-based design of semi-active piezoelectric composites for broadband vibration control[J]. Smart Materials and Structures, 2016, 25(5): 1-15. http://www.ingentaconnect.com/content/iop/sms/2016/00000025/00000005/art055032
    [36] ZHOU C W, LAINÉ J P, ICHCHOU M N, et al. Numerical and experimental investigation on broadband wave propagation features in perforated plates[J]. Mechanical Systems and Signal Processing, 2016, 75: 556-575. doi: 10.1016/j.ymssp.2015.12.006
    [37] ZHOU C W, LAINÉ J P, ICHCHOU M N, et al. Multi-scale modelling for two-dimensional periodic structures using a combined mode/wave based approach[J]. Computers and Structures, 2015, 154: 145-162. doi: 10.1016/j.compstruc.2015.03.006
    [38] BAMPTON M C C, CRAIG J R R. Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6(7): 1313-1319. doi: 10.2514/3.4741
    [39] WILCOX C H. Theory of Bloch waves[J]. Journal d'Analyse Mathématique, 1978, 33(1): 146-167. doi: 10.1007/BF02790171
    [40] MING-HUI L U, ZHANG C, FENG L, et al. Negative birefraction of acoustic waves in a sonic crystal[J]. Nature Materials, 2007, 6(10): 744-748. doi: 10.1038/nmat1987
    [41] YANG W P, WU L Y, CHEN L W. Refractive and focusing behaviours of tunable sonic crystals with dielectric elastomer cylindrical actuators[J]. Journal of Physics D Applied Physics, 2008, 41(13): 135408. doi: 10.1088/0022-3727/41/13/135408
  • 加载中
图(28) / 表(3)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  45
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 录用日期:  2020-09-25
  • 网络出版日期:  2021-07-20

目录

    /

    返回文章
    返回
    常见问答