留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非规则轴承故障的动力学建模与仿真

王震 杨正伟 何浩浩 明安波 张炜

王震, 杨正伟, 何浩浩, 等 . 非规则轴承故障的动力学建模与仿真[J]. 北京航空航天大学学报, 2021, 47(8): 1580-1593. doi: 10.13700/j.bh.1001-5965.2020.0232
引用本文: 王震, 杨正伟, 何浩浩, 等 . 非规则轴承故障的动力学建模与仿真[J]. 北京航空航天大学学报, 2021, 47(8): 1580-1593. doi: 10.13700/j.bh.1001-5965.2020.0232
WANG Zhen, YANG Zhengwei, HE Haohao, et al. Dynamic modeling and simulation of irregular bearing failure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1580-1593. doi: 10.13700/j.bh.1001-5965.2020.0232(in Chinese)
Citation: WANG Zhen, YANG Zhengwei, HE Haohao, et al. Dynamic modeling and simulation of irregular bearing failure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1580-1593. doi: 10.13700/j.bh.1001-5965.2020.0232(in Chinese)

非规则轴承故障的动力学建模与仿真

doi: 10.13700/j.bh.1001-5965.2020.0232
基金项目: 

国家自然科学基金 51505486

国家自然科学基金 61703410

国家自然科学基金 61873175

中国博士后科学基金 2019M650262

航空科学基金 201803U8003

陕西省高校科协青年人才托举项目 20170511

详细信息
    通讯作者:

    明安波. E-mail: 79607672@qq.com

  • 中图分类号: TH133.33

Dynamic modeling and simulation of irregular bearing failure

Funds: 

National Natural Science Foundation of China 51505486

National Natural Science Foundation of China 61703410

National Natural Science Foundation of China 61873175

China Postdoctoral Science Foundation 2019M650262

Aeronautical Science Foundation of China 201803U8003

Shaanxi Provincial Science and Technology Association Young Talents Promotion Project 20170511

More Information
  • 摘要:

    针对现有轴承故障研究大多将故障简化为矩形凹槽或圆形凹坑等规则形状,与实际故障形貌存在较大差别的问题,以航空发动机转子系统为研究对象,从滚动轴承的实际故障形貌和复杂转子系统中主轴轴承易失效的客观实际出发,提出了非规则轴承故障的表征方法,并将其引入单转子-轴承系统动力学模型,建立了轴承内外圈非规则故障模型。利用数值计算的方法对含故障轴承转子系统的振动响应进行了分析,并研究了系统轴承在内外圈含有矩形故障和非规则故障的情况下,故障的周向宽度和深度对系统振动的影响规律。针对滚动轴承内外圈中存在的故障轴承损伤,制作了不同位置、大小的故障轴承,并将其引入转子系统开展试验研究,采集了不同旋转频率和故障尺寸下的系统振动数据,通过与数值仿真结果的比较,充分验证了非规则轴承故障动力学模型的正确性。

     

  • 图 1  单转子-轴承系统

    Figure 1.  Single rotor-bearing system

    图 2  轴承力模型

    Figure 2.  Bearing force model

    图 3  波长导出

    Figure 3.  Wavelength export

    图 4  低通滤波信号

    Figure 4.  Low-pass filtered signal

    图 5  轴承外圈故障模型

    Figure 5.  Bearing outer ring failure model

    图 6  轴承内圈故障模型

    Figure 6.  Bearing inner ring failure model

    图 7  外圈损伤时转子右端垂直振动响应

    Figure 7.  Vertical vibration response of right end of rotor when outer ring is damaged

    图 8  内圈损伤时转子右端垂直振动响应

    Figure 8.  Vertical vibration response of right end of rotor when inner ring is damaged

    图 9  不同故障形貌的外圈故障及其响应

    Figure 9.  Outer ring faults with different fault topography and their responses

    图 10  外圈含不同周向宽度故障时的加速度曲线

    Figure 10.  Acceleration curves when outer ring contains different circumferential width faults

    图 11  外圈故障周向宽度对竖直加速度的影响

    Figure 11.  Influence of outer ring fault circumferential width on vertical acceleration

    图 12  内圈含不同周向宽度故障时的加速度曲线

    Figure 12.  Acceleration curves when inner ring contains different circumferential width faults

    图 13  内圈故障周向宽度对竖直加速度的影响

    Figure 13.  Influence of inner ring fault circumferential width on vertical acceleration

    图 14  外圈含不同深度故障时的加速度曲线

    Figure 14.  Acceleration curves for outer ring with different depth faults

    图 15  外圈故障深度对竖直加速度的影响

    Figure 15.  Influence of outer ring fault depth on vertical acceleration

    图 16  内圈含不同深度故障时的加速度曲线

    Figure 16.  Acceleration curves for inner ring with different depth faults

    图 17  内圈故障深度对竖直加速度的影响

    Figure 17.  Influence of inner ring fault depth on vertical acceleration

    图 18  综合模拟试验台

    Figure 18.  Integrated simulation test bench

    图 19  非规则故障形貌

    Figure 19.  Irregular fault topography

    图 20  滚动轴承外圈含非规则故障

    Figure 20.  Rolling bearing outer ring contains irregular faults

    图 21  不同转速下非规则故障周向宽度对竖直加速度的影响(外圈)

    Figure 21.  Influence of irregular fault width on vertical acceleration at different speeds (outer ring)

    图 22  滚动轴承内圈含非规则故障

    Figure 22.  Rolling bearing inner ring contains irregular faults

    图 23  不同转速下非规则故障周向宽度对竖直加速度的影响(内圈)

    Figure 23.  Influence of irregular fault width on vertical acceleration at different speeds (inner ring)

    表  1  滚动轴承主要计算参数

    Table  1.   Rolling bearing main calculation parameters

    参数 2204K NJ204E
    外圈滚道半径R/mm 23.5 23.5
    内圈滚道半径r/mm 10 10
    滚动体直径d/mm 14 14
    滚珠数目Z 15 9
    赫兹接触刚度Cb/(N·m-3/2) 13.34×109 13.34×109
    轴承初始间隙δ0/μm 0 0
    下载: 导出CSV
  • [1] LU Z Y, WANG X D, HOU L, et al. Nonlinear response analysis for an aero engine dual-rotor system coupled by the inter-shaft bearing[J]. Archive of Applied Mechanics, 2019, 89(7): 1275-1288. doi: 10.1007/s00419-018-01501-0
    [2] 史修江. 航空发动机主轴轴承动态性能和热弹流润滑状态耦合分析[D]. 哈尔滨: 哈尔滨工业大学, 2018: 1-7.

    SHI X J. Coupling analysis of dynamic performance and tehl state of aeroengine main shaft bearing[D]. Harbin: Harbin Institute of Technology, 2018: 1-7(in Chinese).
    [3] 路振勇. 航空发动机转子系统的动力学建模及非线性振动研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 17-24.

    LU Z Y. Dynamical modeling and nonlinear vibration study of aero-engine rotor system[D]. Harbin: Harbin Institute of Technology, 2017: 17-24(in Chinese).
    [4] KANKAR P K, SHARMA S C, HARSHA S P. Fault diagnosis of high speed rolling element bearings due to localized defects using response surface method[J]. Journal of Dynamic Systems, Measurement and Control, 2011, 133(3): 031007. doi: 10.1115/1.4003371
    [5] 东亚斌, 廖明夫, 高琦. 滚动体具有局部缺陷滚动轴承的动力学分析[J]. 重型机械, 2012(3): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJX201203035.htm

    DONG Y B, LIAO M F, GAO Q. Dynamics analysis on rolling element bearings with localized defects[J]. Heavy Machinery, 2012(3): 148-152(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJX201203035.htm
    [6] SAWALHI N, RANDALL R B. The combined gear bearing dynamic model and the simulation of localised bearing faults[J]. Mechanical Systems & Signal Processing, 2008, 22(8): 1924-1951. http://www.sciencedirect.com/science/article/pii/S0888327007002725
    [7] SAWALHI N, RANDALL R B. Simulation of the vibrations produced by extended bearing faults[J]. Mechanical Systems & Signal Processing, 2008, 22(8): 1952-1966. http://www.nla.gov.au/nla.arc-143701-20140314-1701-www.acoustics.asn.au/conference_proceedings/aasnz2006/papers/p120.pdf
    [8] 陈果. 转子-滚动轴承-机匣耦合系统中滚动轴承故障的动力学分析[J]. 振动工程学报, 2008, 21(6): 577-587. doi: 10.3969/j.issn.1004-4523.2008.06.008

    CHEN G. Dynamic analysis of ball bearing faults in rotor-ball bearing-stator coupling system[J]. Journal of Vibration Engineering, 2008, 21(6): 577-587(in Chinese). doi: 10.3969/j.issn.1004-4523.2008.06.008
    [9] 廖明夫. 航空发动机转子动力学[M]. 西安: 西北工业大学出版社, 2015: 163-170.

    LIAO M F. Aeroengine rotor dynamics[M]. Xi'an: Northwestern Polytechnical University Press, 2015: 163-170(in Chinese).
    [10] CAO H R, NIU L K, XI S T, et al. Mechanical model development of rolling bearing-rotor systems: A review[J]. Mechanical Systems & Signal Processing, 2018, 102: 37-58. http://www.sciencedirect.com/science/article/pii/S0888327017304971
    [11] 张智勇. 球轴承-转子系统变柔度振动的分岔与滞后行为[D]. 哈尔滨: 哈尔滨工业大学, 2015: 18-23.

    ZHANG Z Y. Bifurcations and hysteresis of varying compliance vibrations of a ball bearing-rotor system[D]. Harbin: Harbin Institute of Technology, 2015: 18-23(in Chinese).
    [12] 何浩浩. 含非规则轴承故障的航空发动机双转子系统动力学建模与特性分析[D]. 西安: 火箭军工程大学, 2017: 11-18.

    He H H. Dynamic Modeling and characteristic analysis of aeroengine dual rotor system with irregular bearing faults[D]. Xi'an: Rocket Force University of Engineering, 2017: 11-18(in Chinese).
    [13] 关贞珍, 郑海起, 王彦刚, 等. 滚动轴承局部损伤故障动力学建模及仿真[J]. 振动·测试与诊断, 2012, 32(6): 950-955. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201206015.htm

    GUAN Z Z, ZHENG H Q, WANG Y G, et al. Fault dynamic modeling and simulating of rolling bearing with localized defect[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(6): 950-955(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201206015.htm
    [14] 徐可君, 任帅, 秦海勤, 等. 滚动轴承内圈故障的动力学模型建立及仿真[J]. 航空发动机, 2015, 41(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201504003.htm

    XU K J, REN S, QIN H Q, et al. Dynamics model establishment and simulation of rolling bearing element with inner race defect[J]. Aeroengine, 2015, 41(4): 8-11(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201504003.htm
    [15] 罗茂林, 郭瑜, 伍星. 考虑冲击力的球轴承外圈剥落缺陷双冲击现象动力学建模[J]. 振动与冲击, 2019, 38(14): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914007.htm

    LUO M L, GUO Y, WU X. Dynamic modeling of the dual-impulse behavior produced by a spall on the outer race of a ball bearing considering impact forces[J]. Journal of Vibration and Shock, 2019, 38(14): 48-54(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914007.htm
    [16] CHEN G. A new rotor-ball bearing-stator coupling dynamics model for whole aero-engine vibration[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2009, 131(6): 0610091-0610099. http://www.researchgate.net/publication/243711164_A_New_Rotor-Ball_Bearing-Stator_Coupling_Dynamics_Model_for_Whole_Aero-Engine_Vibration
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  129
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 录用日期:  2020-08-30
  • 网络出版日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答