留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模糊特征目标的相对熵识别法

张虎彪 王星 徐宇恒 吴笑天 胡文辉

张虎彪,王星,徐宇恒,等. 模糊特征目标的相对熵识别法[J]. 北京航空航天大学学报,2023,49(12):3547-3558 doi: 10.13700/j.bh.1001-5965.2020.0237
引用本文: 张虎彪,王星,徐宇恒,等. 模糊特征目标的相对熵识别法[J]. 北京航空航天大学学报,2023,49(12):3547-3558 doi: 10.13700/j.bh.1001-5965.2020.0237
ZHANG H B,WANG X,XU Y H,et al. Relative entropy method in target recognition with fuzzy features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3547-3558 (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0237
Citation: ZHANG H B,WANG X,XU Y H,et al. Relative entropy method in target recognition with fuzzy features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3547-3558 (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0237

模糊特征目标的相对熵识别法

doi: 10.13700/j.bh.1001-5965.2020.0237
详细信息
    通讯作者:

    E-mail:13399289501@189.cn

  • 中图分类号: TN971;C934

Relative entropy method in target recognition with fuzzy features

More Information
  • 摘要:

    针对模糊特征的目标识别问题,提出了一种结合模糊建模和改进CRITIC方法的相对熵识别方法。计算多个时刻观测值的统计特征,通过模糊建模将观测值转化为模糊数;基于模糊数距离测度,定义并计算目标特征值和观测值之间的相似度;对CRITIC方法进行改进,提出一种目标特征客观权重的求解方法;根据相似度和特征权重,使用相对熵排序法得到识别结果。仿真结果显示:模糊特征能够更好地体现识别中的不确定性,所提方法对模糊特征的目标识别率高,实时性和鲁棒性好,具有一定的应用价值。

     

  • 图 1  目标识别问题的多属性决策模型

    Figure 1.  Multiple attribute decision making model in target recognition

    图 2  模糊特征目标的相对熵识别法流程

    Figure 2.  Process of relative entropy method in target recognition for fuzzy feature targets

    图 3  目标特征权重的均值

    Figure 3.  Average weights of target features

    图 4  识别率随观测值组数变化曲线

    Figure 4.  Recognition rate relationship with number of sets of observed values

    图 5  同时存在正常数据和奇异点时识别率随观测值组数变化曲线

    Figure 5.  Recognition rate relationship with number of sets of observed values with both normal data and outliers

    表  1  空中目标模糊数据库

    Table  1.   Fuzzy database of air targets

    目标F1/(km·h−1)F2/(m·s−2)F3/kmF4/GHz
    T1(800,900,1050)(0,1.2,3.0)(10.0,12.5,15.0)(13.05,13.20,13.35)
    T2(580,700,800)(0,0.7,2.8)(10.0,12.0,14.0)(14.50,14.70,14.90)
    T3(400,600,955)(0,0.5,2.0)(7.5,9.0,12.0)(2.30,2.40,2.50)
    T4(905,1200,1800)(0,4.0,8.0)(13.0,16.0,18.0)(9.25,9.35,9.45)
    T5(710,1100,1500)(0,3.2,6.0)(8.0,13.0,14.0)(9.20,9.30,9.40)
    下载: 导出CSV

    表  2  不同相似度指标下的识别率

    Table  2.   Recognition rate of different similarity metrics

    M识别率/%
    似然
    函数法
    顶点法L2-metric
    距离法
    1.073.4399.5899.77
    1.170.8098.7099.08
    1.267.7897.2297.76
    下载: 导出CSV

    表  3  不同权重计算方法下的识别率

    Table  3.   Recognition rate of different weight calculation %

    权重
    计算
    识别率
    等权重法 96.90
    熵权法 96.96
    CRITIC
    方法
    96.35
    改进CRITIC
    方法
    97.92
    下载: 导出CSV

    表  4  不同多属性决策方法下的识别率

    Table  4.   Recognition rate of different multiple attribute decision making methods %

    方法 识别率
    TOPSIS 97.62
    灰色关联TOPSIS 95.35
    相对熵排序法 97.94
    下载: 导出CSV

    表  5  不同观测值组数下的识别率

    Table  5.   Recognition rate of different sets of observations

    N识别率/%N识别率/%
    294.421399.80
    395.931499.87
    497.051599.91
    597.861699.91
    698.341799.94
    798.821899.96
    899.171999.96
    999.392099.97
    1099.602199.98
    1199.702299.98
    1299.75
    下载: 导出CSV

    表  6  不同目标数量和观测值组数下的运行时间

    Table  6.   Running time of different numbers of targets and sets of observations

    N运行时间/ms
    nT=2nT=3nT=4nT=5
    20.3370.3750.4070.447
    30.3330.3750.4100.447
    40.3320.3700.4080.449
    50.3300.3770.4100.450
    60.3330.3740.4090.450
    70.3340.3810.4090.447
    80.3340.3770.4130.446
    下载: 导出CSV

    表  7  不同特征数量和观测值组数下的运行时间

    Table  7.   Running time of different numbers of features and sets of observations

    N运行时间/ms
    nF=1nF=2nF=3nF=4
    20.0940.1690.2220.270
    30.0910.1670.2180.271
    40.0930.1670.2180.271
    50.0890.1680.2230.273
    60.0910.1660.2140.268
    70.0930.1670.2210.274
    80.0940.1660.2150.272
    下载: 导出CSV

    表  8  不同观测值组数下的虚警率

    Table  8.   False alarm rate of different sets of observations

    N虚警率/%平均
    虚警率/%
    T1T2T3T4T5
    25.006.706.176.586.396.17
    33.715.195.325.455.395.01
    42.934.764.574.414.264.19
    52.374.114.063.893.993.68
    61.483.373.663.483.493.10
    71.053.232.973.143.502.78
    80.742.762.582.762.652.30
    下载: 导出CSV

    表  9  只存在奇异点时不同观测值组数下的识别率

    Table  9.   Recognition rate with different sets of observations when only outliers exist

    N识别率/%
    M=1.2M=1.4M=1.6M=1.8M=2.0
    240.5336.6032.0428.4024.11
    340.1834.5932.4029.6226.36
    444.9041.2037.6934.2228.18
    547.7842.5438.3134.0730.01
    649.8843.4639.9536.4431.39
    749.6245.0341.2336.5831.62
    851.7445.2841.1037.1532.04
    下载: 导出CSV

    表  10  同时存在正常数据和奇异点时不同观测值组数下的识别率

    Table  10.   Recognition rate of different sets of observations with both normal data and outliers

    N识别率/%
    M=1.0M=1.2M=1.4M=1.6M=1.8M=2.0
    297.7393.9489.1082.6775.5268.64
    398.8594.9189.2281.0372.1563.47
    499.4195.7289.3080.1969.5860.31
    599.7196.5189.8179.3167.5557.57
    699.8397.0489.9778.4665.5555.27
    799.9197.1890.4377.7764.0955.73
    899.9597.5290.8676.8362.8652.68
    下载: 导出CSV

    表  11  不同奇异点偏离程度下的识别率

    Table  11.   Recognition rate of different deviation degrees of outliers

    N识别率/%
    M=1.2M=1.4M=1.6M=1.8M=2.0
    240.6536.9732.3028.2424.22
    339.9534.6632.3829.5726.94
    444.9041.5937.3633.9328.34
    547.4742.3938.4734.4929.80
    649.6743.4540.0935.8731.28
    750.2945.0641.0336.3031.61
    851.6245.4840.9937.2931.88
    下载: 导出CSV
  • [1] LI Y B, CHEN J E, YE F, et al. The improvement of DS evidence theory and its application in IR/MMW target recognition[J]. Journal of Sensors, 2016, 2016: 1-15.
    [2] FU Y J, SUN K F. Solution to evidence conflict in target recognition[C]//Proceedinhgs of the Joint International Advanced Engineering and Technology Research Conference. Paris: Atlantis Press, 2018, 137: 302-306.
    [3] 孟光磊, 龚光红. 证据源权重的计算及其在证据融合中的应用[J]. 北京航空航天大学学报, 2010, 36(11): 1365-1368. doi: 10.13700/j.bh.1001-5965.2010.11.027

    MENG G L, GONG G H. Weight coefficients calculation for evidence sources and it’s application in evidences fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11): 1365-1368(in Chinese). doi: 10.13700/j.bh.1001-5965.2010.11.027
    [4] 陆峰, 徐友春, 李永乐, 等. 基于DSmT理论的多视角融合目标检测识别[J]. 机器人, 2018, 40(5): 723-733. doi: 10.13973/j.cnki.robot.170507

    LU F, XU Y C, LI Y L, et al. Multi-perspective fusion for object detection and recognition based on DSmT[J]. Robot, 2018, 40(5): 723-733(in Chinese). doi: 10.13973/j.cnki.robot.170507
    [5] FAN X M, HU S L, HE J B. A dynamic selection ensemble method for target recognition based on clustering and randomized reference classifier[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(3): 515-525. doi: 10.1007/s13042-017-0732-2
    [6] DING J, CHEN B, LIU H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(3): 364-368.
    [7] YANG H H, GAN A Q, CHEN H L, et al. Underwater acoustic target recognition using SVM ensemble via weighted sample and feature selection[C]//Proceedings of the 13th International Bhurban Conference on Applied Sciences and Technology. Piscataway: IEEE Press, 2016: 522-527.
    [8] 雒建卫, 姜志国. 基于背景属性的目标识别[J]. 北京航空航天大学学报, 2014, 40(12): 1702-1706. doi: 10.13700/j.bh.1001-5965.2013.0750

    LUO J W, JIANG Z G. Object recognition based on background attributes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1702-1706(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0750
    [9] 万树平. 多传感器目标识别的理想点法[J]. 传感器与微系统, 2008, 27(9): 50-51. doi: 10.3969/j.issn.1000-9787.2008.09.016

    WAN S P. Method based on ideal point for multi-sensor target recognition[J]. Transducer and Microsystem Technologies, 2008, 27(9): 50-51(in Chinese). doi: 10.3969/j.issn.1000-9787.2008.09.016
    [10] 万树平. 机器人非视觉多传感器信息融合的TOPSIS法[J]. 计算机工程与应用, 2009, 45(7): 209-211. doi: 10.3778/j.issn.1002-8331.2009.07.064

    WAN S P. TOPSIS method for robot non-vision multi-sensor information fusion[J]. Computer Engineering and Applications, 2009, 45(7): 209-211(in Chinese). doi: 10.3778/j.issn.1002-8331.2009.07.064
    [11] ZHENG H. Multi-sensor target recognition using VIKOR combined with G1 method[J]. Applied Mechanics and Materials, 2014, 707: 321-324. doi: 10.4028/www.scientific.net/AMM.707.321
    [12] REN H P, QIU X H. Relative entropy evaluation method for multi-sensor target recognition[J]. International Journal of Control and Automation, 2016, 9(6): 319-326. doi: 10.14257/ijca.2016.9.6.30
    [13] REN H P, YANG L W. Multi-sensor target recognition based on VIKOR[J]. Sensors and Transducers, 2013, 156(9): 130-135.
    [14] 阳连武, 冷建华, 黄义强. 多传感器目标识别的灰色关联TOPSIS法[J]. 宜春学院学报, 2016, 38(3): 6-8.

    YANG L W, LENG J H, HUANG Y Q. Multi-sensor target recognition based on TOPSIS method combining with grey relation analysis[J]. Journal of Yichun University, 2016, 38(3): 6-8(in Chinese).
    [15] 李双明, 关欣, 赵静, 等. 一种参数区间交叉类型的目标识别方法[J]. 北京航空航天大学学报, 2020, 46(7): 1307-1316. doi: 10.13700/j.bh.1001-5965.2019.0442

    LI S M, GUAN X, ZHAO J, et al. A methodology for target recognition with parameters of interval cross type[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1307-1316(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0442
    [16] 吴强, 姜礼平, 季傲. 基于模糊集和D-S证据理论的空中作战目标识别[J]. 指挥控制与仿真, 2015, 37(4): 54-58.

    WU Q, JIANG L P, JI A. Aircraft target identification based on fuzzy sets and D-S evidence theory in air operation[J]. Command Control & Simulation, 2015, 37(4): 54-58(in Chinese).
    [17] 刘杨, 姜礼平, 管正. 利用时间谱信息融合的空中目标分类算法[J]. 火力与指挥控制, 2016, 41(3): 8-11. doi: 10.3969/j.issn.1002-0640.2016.03.003

    LIU Y, JIANG L P, GUAN Z. Aircraft target classification based on fusion of registration information[J]. Fire Control & Command Control, 2016, 41(3): 8-11(in Chinese). doi: 10.3969/j.issn.1002-0640.2016.03.003
    [18] 邓勇, 朱振福, 钟山. 基于证据理论的模糊信息融合及其在目标识别中的应用[J]. 航空学报, 2005, 26(6): 754-758.

    DENG Y, ZHU Z F, ZHONG S. Fuzzy information fusion based on evidence theory and its application in target recognition[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 754-758(in Chinese).
    [19] 刘兵, 李辉, 邢钢. 基于加权证据理论的模糊信息融合目标识别[J]. 计算机工程, 2012, 38(15): 172-174. doi: 10.3969/j.issn.1000-3428.2012.15.048

    LIU B, LI H, XING G. Fuzzy information fusion target recognition based on weighted evidence theory[J]. Computer Engineering, 2012, 38(15): 172-174(in Chinese). doi: 10.3969/j.issn.1000-3428.2012.15.048
    [20] 蒋雯, 张安, 杨奇. 基于模糊特征属性参数最优融合的目标识别[J]. 计算机仿真, 2009, 26(7): 9-11. doi: 10.3969/j.issn.1006-9348.2009.07.003

    JIANG W, ZHANG A, YANG Q. Target recognition based on optimal fusion of fuzzy attributes[J]. Computer Simulation, 2009, 26(7): 9-11(in Chinese). doi: 10.3969/j.issn.1006-9348.2009.07.003
    [21] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [22] DUBOIS D, PRADE H. Operations on fuzzy numbers[J]. International Journal of Systems Science, 1978, 9(6): 613-626. doi: 10.1080/00207727808941724
    [23] WANG K. A new multi-sensor target recognition framework based on Dempster-Shafer evidence theory[J]. International Journal of Performability Engineering, 2018, 14(6): 1224-1233.
    [24] MA T S, XIAO F Y. An improved method to transform triangular fuzzy number into basic belief assignment in evidence theory[J]. IEEE Access, 2019, 7: 25308-25322. doi: 10.1109/ACCESS.2019.2900362
    [25] CHEN C T. Extensions of the TOPSIS for group decision-making under fuzzy environment[J]. Fuzzy Sets and Systems, 2000, 114(1): 1-9. doi: 10.1016/S0165-0114(97)00377-1
    [26] MAHDAVI I, MAHDAVI-AMIRI N, HEIDARZADE A, et al. Designing a model of fuzzy TOPSIS in multiple criteria decision making[J]. Applied Mathematics and Computation, 2008, 206(2): 607-617. doi: 10.1016/j.amc.2008.05.047
    [27] LI D F. Compromise ratio method for fuzzy multi-attribute group decision making[J]. Applied Soft Computing, 2007, 7(3): 807-817. doi: 10.1016/j.asoc.2006.02.003
    [28] DIAKOULAKI D, MAVROTAS G, PAPAYANNAKIS L. Determining objective weights in multiple criteria problems: The critic method[J]. Computers & Operations Research, 1995, 22(7): 763-770.
    [29] 林冠强, 莫天文, 叶晓君, 等. 基于TOPSIS和CRITIC法的电网关键节点识别[J]. 高电压技术, 2018, 44(10): 3383-3389. doi: 10.13336/j.1003-6520.hve.20180925030

    LIN G Q, MO T W, YE X J, et al. Critical node identification of power networks based on TOPSIS and CRITIC methods[J]. High Voltage Engineering, 2018, 44(10): 3383-3389(in Chinese). doi: 10.13336/j.1003-6520.hve.20180925030
    [30] 胡永宏. 对TOPSIS法用于综合评价的改进[J]. 数学的实践与认识, 2002, 32(4): 572-575.

    HU Y H. The improved method for TOPSIS in comprehensive evaluation[J]. Mathematics in Practice and Theory, 2002, 32(4): 572-575(in Chinese).
    [31] 赵萌, 邱菀华, 刘北上. 基于相对熵的多属性决策排序方法[J]. 控制与决策, 2010, 25(7): 1098-1100. doi: 10.13195/j.cd.2010.07.141.zhaom.029

    ZHAO M, QIU W H, LIU B S. Relative entropy evaluation method for multiple attribute decision making[J]. Control and Decision, 2010, 25(7): 1098-1100(in Chinese). doi: 10.13195/j.cd.2010.07.141.zhaom.029
    [32] 杨涛, 李成文, 刘宇, 等. 机载PowerPC系列高性能处理器模块硬件设计[J]. 大众科技, 2015, 17(5): 1-4.

    YANG T, LI C W, LIU Y, et al. Airborne PowerPC series high-performance processor module hardware design[J]. Popular Science & Technology, 2015, 17(5): 1-4(in Chinese).
  • 加载中
图(5) / 表(11)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  18
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 录用日期:  2020-10-09
  • 网络出版日期:  2020-10-21
  • 整期出版日期:  2023-12-31

目录

    /

    返回文章
    返回
    常见问答