留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种中继无人机快速部署策略

张小孟 杨森 宋晓 胡永江 李文广

张小孟, 杨森, 宋晓, 等 . 一种中继无人机快速部署策略[J]. 北京航空航天大学学报, 2021, 47(8): 1705-1711. doi: 10.13700/j.bh.1001-5965.2020.0249
引用本文: 张小孟, 杨森, 宋晓, 等 . 一种中继无人机快速部署策略[J]. 北京航空航天大学学报, 2021, 47(8): 1705-1711. doi: 10.13700/j.bh.1001-5965.2020.0249
ZHANG Xiaomeng, YANG Sen, SONG Xiao, et al. A rapid deployment strategy of relay unmanned aerial vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1705-1711. doi: 10.13700/j.bh.1001-5965.2020.0249(in Chinese)
Citation: ZHANG Xiaomeng, YANG Sen, SONG Xiao, et al. A rapid deployment strategy of relay unmanned aerial vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1705-1711. doi: 10.13700/j.bh.1001-5965.2020.0249(in Chinese)

一种中继无人机快速部署策略

doi: 10.13700/j.bh.1001-5965.2020.0249
基金项目: 

陆军工程大学石家庄校区科研创新发展基金 School Education (2019) No. 71

详细信息
    通讯作者:

    杨森. E-mail: 568657132@qq.com

  • 中图分类号: V279

A rapid deployment strategy of relay unmanned aerial vehicle

Funds: 

Scientific Research and Innovation Development Fund of Shijiazhuang Campus of Army Engineering University School Education (2019) No. 71

More Information
  • 摘要:

    针对任务规划中中继无人机部署效率低,部署方案无法满足最少数量要求等问题,提出了一种中继无人机快速部署策略。首先,根据最少中继节点的任务要求,建立了基于最少中继节点的部署模型。其次,优化了深度优先搜索算法的搜索方式,实现了节点间可行链路的快速搜索。最后,在人工蜂群(ABC)算法中引入快速深度优先搜索(DFS)算法,来求解最少中继节点部署方案。仿真结果表明:在相同任务规模下,所提策略的求解速度相较于改进前提高了53.56%左右,部署的中继无人机数量相较于现有方法减小了11.88%左右。

     

  • 图 1  变异算子操作

    Figure 1.  Mutation operator operation

    图 2  RDFS-ABC算法流程

    Figure 2.  RDFS-ABC algorithm flowchart

    图 3  中继节点部署图

    Figure 3.  Deployment diagram of relay nodes

    图 4  运行时间对比图

    Figure 4.  Run time comparison chart

    图 5  PSO算法中继节点部署图

    Figure 5.  Relay node deployment diagram with PSO algorithm

    图 6  RDFS-ABC算法中继节点部署图

    Figure 6.  Relay node deployment diagram with RDFS-ABC algorithm

    图 7  AHOP算法中继节点部署图

    Figure 7.  Relay node deployment diagram with AHOP algorithm

    表  1  实验参数设置

    Table  1.   Experimental parameter setting

    参数 数值
    有效通信距离d0/m 500
    安全距离dsf/m 20
    测控系统位置g(x, y)/m (350, 300)
    种群规模NP 100
    蜜源维度D 28
    最大搜索次数l 5
    最大迭代次数c 60
    下载: 导出CSV

    表  2  任务节点位置坐标

    Table  2.   Task node location coordinates

    目标 位置(x, y)/m 目标 位置(x, y)/m
    1 (1 150, 1 176) 16 (1 280, 1 200)
    2 (630, 1 660) 17 (230, 590)
    3 (40, 2 090) 18 (460, 860)
    4 (750, 1 100) 19 (1 040, 950)
    5 (750, 2 030) 20 (590, 1 390)
    6 (1 030, 2 070) 21 (830, 1 770)
    7 (1 650, 650) 22 (490, 500)
    8 (1 490, 1 630) 23 (1 840, 1 240)
    9 (790, 2 260) 24 (1 260, 1 500)
    10 (710, 1 310) 25 (1 280, 790)
    11 (840, 550) 26 (490, 2 130)
    12 (1 170, 2 300) 27 (1 460, 1 420)
    13 (970, 1 340) 28 (1 260, 1 910)
    14 (510, 700) 29 (360, 1 980)
    15 (750, 900) 30 (110, 900)
    下载: 导出CSV

    表  3  两种算法运行的平均时间

    Table  3.   Average schedule of two algorithms

    目标数量 平均时间/s 降低比例/%
    RDFS-ABC算法 DFS-ABC算法
    5 5.59 13.05 57.16
    10 13.31 27.19 51.05
    15 18.12 40.07 54.78
    20 21.62 47.10 54.10
    25 26.67 57.09 53.28
    30 33.56 68.43 50.96
    下载: 导出CSV

    表  4  中继节点平均数量

    Table  4.   Average number of relay nodes

    算法 中继节点个数 增加率/%
    RDFS-ABC 7.05 0
    PSO 8.34 15.47
    AHOP 8.00 11.88
    下载: 导出CSV
  • [1] OUBBATI O S, LAKAS A, ZHOU F, et al. A survey on position-based routing protocols for flying ad hoc networks (FANETs)[J]. Vehicular Communications, 2017, 10: 29-56. doi: 10.1016/j.vehcom.2017.10.003
    [2] OUBBATI O S, ATIQUZZAMAN M, LORENZ P, et al. Routing in flying ad hoc networks: Survey, constraints, and future challenge perspectives[J]. IEEE Access, 2019, 7: 81057-81105. doi: 10.1109/ACCESS.2019.2923840
    [3] BEKMEZCI, SAHINGOZ O K, TEMEL Ş. Flying ad-hoc networks (FANETs): A survey[J]. Ad Hoc Networks, 2013, 11(3): 1254-1270. doi: 10.1016/j.adhoc.2012.12.004
    [4] MARCO M, EDISON F, JOAO L, et al. Using cooperative MIMO technigues wireless sensor networks[C]//2013 International Conference on Computing Management and Teleoommunications, 2013.
    [5] 屈鑫祺. 无人机中继的节能部署算法研究[D]. 西安: 西安电子科技大学, 2019.

    QU X Q. Research on energy-saving deployment algorithm for UAV relay[D]. Xi'an: Xidian University, 2019(in Chinese).
    [6] 岳殿武, 孟子琦, 孙玉, 等. 大规模MIMO中继系统基于LoS的等增益传输方案[J]. 系统工程与电子技术, 2018, 40(10): 2340-2347. doi: 10.3969/j.issn.1001-506X.2018.10.27

    YUE D W, MENG Z Q, SUN Y, et al. Los-based equal gain transmission scheme for massive MIMO relaying systems[J]. Systems Engineering and Electronics, 2018, 40(10): 2340-2347(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.10.27
    [7] ZHU L, YAO C H, WANG L. Optimal energy efficiency distributed relay decision in UAV swarms[J]. Wireless Personal Communications, 2018, 102(4): 2997-3008. doi: 10.1007/s11277-018-5321-5
    [8] KIM D Y, LEE J W. Topology construction for flying ad hoc networks (FANETs)[C]//2017 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway: IEEE Press, 2017: 153-157.
    [9] KIM D Y, LEE J W. Joint mission assignment and topology management in the mission-critical FANET[C]//IEEE Internet of Things Journal. Piscataway: IEEE Press, 2020: 2368-2385.
    [10] 吴高峰, 高晓光, 符小卫. 一种基于多无人机的中继节点布置问题建模与优化方法[J]. 航空学报, 2017, 38(11): 321195. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201711023.htm

    WU G F, GAO X G, FU X W. Modeling and optimization method of relay node placement using multi-UAV[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 321195(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201711023.htm
    [11] KIM D Y, LEE J W. Joint mission assignment and location management for UAVs in mission-critical flying ad hoc networks[C]//2018 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway: IEEE Press, 2018: 323-328.
    [12] KIM D Y, LEE J W. Integrated topology management in flying ad hoc networks: Topology construction and adjustment[J]. IEEE Access, 2018, 6: 61196-61211. doi: 10.1109/ACCESS.2018.2875679
    [13] BURDAKOV O, DOHERTY P, HOLMBERG K, et al. Optimal placement of UV-based communications relay nodes[J]. Journal of Global Optimization, 2010, 48(4): 511-531. doi: 10.1007/s10898-010-9526-8
    [14] LLOYD E L, XUE G L. Relay node placement in wireless sensor networks[J]. IEEE Transactions on Computers, 2007, 56(1): 134-138. doi: 10.1109/TC.2007.250629
    [15] 杨正磊, 钟文冬, 席涛, 等. 面向应急需求的成像卫星单任务综合规划[J]. 系统工程与电子技术, 2018, 40(9): 2000-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201809016.htm

    YANG Z L, ZHONG W D, XI T, et al. Imaging reconnaissance satellites single mission integrated scheduling for emergency requirements[J]. Systems Engineering and Electronics, 2018, 40(9): 2000-2006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201809016.htm
    [16] KARABOGA D. An idea based on honey bee swarm for numerical optimization[C]//2013 International Conference on Computing, Management and Tececommunications, 2013: 49-54.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  3
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 录用日期:  2020-08-01
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答