-
摘要:
针对任务规划中中继无人机部署效率低,部署方案无法满足最少数量要求等问题,提出了一种中继无人机快速部署策略。首先,根据最少中继节点的任务要求,建立了基于最少中继节点的部署模型。其次,优化了深度优先搜索算法的搜索方式,实现了节点间可行链路的快速搜索。最后,在人工蜂群(ABC)算法中引入快速深度优先搜索(DFS)算法,来求解最少中继节点部署方案。仿真结果表明:在相同任务规模下,所提策略的求解速度相较于改进前提高了53.56%左右,部署的中继无人机数量相较于现有方法减小了11.88%左右。
Abstract:In order to solve the problems in mission planning, such as the low deployment efficiency of relay Unmanned Aerial Vehicle (UAV) and the deployment scheme cannot meet the minimum number requirements, a fast relay UAV deployment strategy is proposed. First, according to the task requirements of the least relay nodes, a deployment model based on the least relay nodes is established. Then, the search mode of the depth-first search algorithm is optimized, and the fast search of feasible links between nodes is realized. Finally, the Rapid Depth-First Search (RDFS) algorithm is introduced into the Artificial Bee Colony (ABC) algorithm to solve the deployment scheme of the least relay nodes. The simulation results show that under the same task scale, the solution speed of this strategy is about 53.56% higher than that before improvement, and the number of deployed relay UAVs is reduced by about 11.88% compared with the existing methods.
-
Key words:
- relay UAV /
- deployment scheme /
- depth first /
- minimum nodes /
- Artificial Bee Colony (ABC)
-
表 1 实验参数设置
Table 1. Experimental parameter setting
参数 数值 有效通信距离d0/m 500 安全距离dsf/m 20 测控系统位置g(x, y)/m (350, 300) 种群规模NP 100 蜜源维度D 28 最大搜索次数l 5 最大迭代次数c 60 表 2 任务节点位置坐标
Table 2. Task node location coordinates
目标 位置(x, y)/m 目标 位置(x, y)/m 1 (1 150, 1 176) 16 (1 280, 1 200) 2 (630, 1 660) 17 (230, 590) 3 (40, 2 090) 18 (460, 860) 4 (750, 1 100) 19 (1 040, 950) 5 (750, 2 030) 20 (590, 1 390) 6 (1 030, 2 070) 21 (830, 1 770) 7 (1 650, 650) 22 (490, 500) 8 (1 490, 1 630) 23 (1 840, 1 240) 9 (790, 2 260) 24 (1 260, 1 500) 10 (710, 1 310) 25 (1 280, 790) 11 (840, 550) 26 (490, 2 130) 12 (1 170, 2 300) 27 (1 460, 1 420) 13 (970, 1 340) 28 (1 260, 1 910) 14 (510, 700) 29 (360, 1 980) 15 (750, 900) 30 (110, 900) 表 3 两种算法运行的平均时间
Table 3. Average schedule of two algorithms
目标数量 平均时间/s 降低比例/% RDFS-ABC算法 DFS-ABC算法 5 5.59 13.05 57.16 10 13.31 27.19 51.05 15 18.12 40.07 54.78 20 21.62 47.10 54.10 25 26.67 57.09 53.28 30 33.56 68.43 50.96 表 4 中继节点平均数量
Table 4. Average number of relay nodes
算法 中继节点个数 增加率/% RDFS-ABC 7.05 0 PSO 8.34 15.47 AHOP 8.00 11.88 -
[1] OUBBATI O S, LAKAS A, ZHOU F, et al. A survey on position-based routing protocols for flying ad hoc networks (FANETs)[J]. Vehicular Communications, 2017, 10: 29-56. doi: 10.1016/j.vehcom.2017.10.003 [2] OUBBATI O S, ATIQUZZAMAN M, LORENZ P, et al. Routing in flying ad hoc networks: Survey, constraints, and future challenge perspectives[J]. IEEE Access, 2019, 7: 81057-81105. doi: 10.1109/ACCESS.2019.2923840 [3] BEKMEZCI, SAHINGOZ O K, TEMEL Ş. Flying ad-hoc networks (FANETs): A survey[J]. Ad Hoc Networks, 2013, 11(3): 1254-1270. doi: 10.1016/j.adhoc.2012.12.004 [4] MARCO M, EDISON F, JOAO L, et al. Using cooperative MIMO technigues wireless sensor networks[C]//2013 International Conference on Computing Management and Teleoommunications, 2013. [5] 屈鑫祺. 无人机中继的节能部署算法研究[D]. 西安: 西安电子科技大学, 2019.QU X Q. Research on energy-saving deployment algorithm for UAV relay[D]. Xi'an: Xidian University, 2019(in Chinese). [6] 岳殿武, 孟子琦, 孙玉, 等. 大规模MIMO中继系统基于LoS的等增益传输方案[J]. 系统工程与电子技术, 2018, 40(10): 2340-2347. doi: 10.3969/j.issn.1001-506X.2018.10.27YUE D W, MENG Z Q, SUN Y, et al. Los-based equal gain transmission scheme for massive MIMO relaying systems[J]. Systems Engineering and Electronics, 2018, 40(10): 2340-2347(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.10.27 [7] ZHU L, YAO C H, WANG L. Optimal energy efficiency distributed relay decision in UAV swarms[J]. Wireless Personal Communications, 2018, 102(4): 2997-3008. doi: 10.1007/s11277-018-5321-5 [8] KIM D Y, LEE J W. Topology construction for flying ad hoc networks (FANETs)[C]//2017 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway: IEEE Press, 2017: 153-157. [9] KIM D Y, LEE J W. Joint mission assignment and topology management in the mission-critical FANET[C]//IEEE Internet of Things Journal. Piscataway: IEEE Press, 2020: 2368-2385. [10] 吴高峰, 高晓光, 符小卫. 一种基于多无人机的中继节点布置问题建模与优化方法[J]. 航空学报, 2017, 38(11): 321195. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201711023.htmWU G F, GAO X G, FU X W. Modeling and optimization method of relay node placement using multi-UAV[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 321195(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201711023.htm [11] KIM D Y, LEE J W. Joint mission assignment and location management for UAVs in mission-critical flying ad hoc networks[C]//2018 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway: IEEE Press, 2018: 323-328. [12] KIM D Y, LEE J W. Integrated topology management in flying ad hoc networks: Topology construction and adjustment[J]. IEEE Access, 2018, 6: 61196-61211. doi: 10.1109/ACCESS.2018.2875679 [13] BURDAKOV O, DOHERTY P, HOLMBERG K, et al. Optimal placement of UV-based communications relay nodes[J]. Journal of Global Optimization, 2010, 48(4): 511-531. doi: 10.1007/s10898-010-9526-8 [14] LLOYD E L, XUE G L. Relay node placement in wireless sensor networks[J]. IEEE Transactions on Computers, 2007, 56(1): 134-138. doi: 10.1109/TC.2007.250629 [15] 杨正磊, 钟文冬, 席涛, 等. 面向应急需求的成像卫星单任务综合规划[J]. 系统工程与电子技术, 2018, 40(9): 2000-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201809016.htmYANG Z L, ZHONG W D, XI T, et al. Imaging reconnaissance satellites single mission integrated scheduling for emergency requirements[J]. Systems Engineering and Electronics, 2018, 40(9): 2000-2006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201809016.htm [16] KARABOGA D. An idea based on honey bee swarm for numerical optimization[C]//2013 International Conference on Computing, Management and Tececommunications, 2013: 49-54.