留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进加权响应面的结构可靠度计算方法

吴洁 张建国 游令非 叶楠

吴洁, 张建国, 游令非, 等 . 基于改进加权响应面的结构可靠度计算方法[J]. 北京航空航天大学学报, 2021, 47(8): 1638-1645. doi: 10.13700/j.bh.1001-5965.2020.0251
引用本文: 吴洁, 张建国, 游令非, 等 . 基于改进加权响应面的结构可靠度计算方法[J]. 北京航空航天大学学报, 2021, 47(8): 1638-1645. doi: 10.13700/j.bh.1001-5965.2020.0251
WU Jie, ZHANG Jianguo, YOU Lingfei, et al. Structural reliability calculation method based on improved weighted response surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1638-1645. doi: 10.13700/j.bh.1001-5965.2020.0251(in Chinese)
Citation: WU Jie, ZHANG Jianguo, YOU Lingfei, et al. Structural reliability calculation method based on improved weighted response surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1638-1645. doi: 10.13700/j.bh.1001-5965.2020.0251(in Chinese)

基于改进加权响应面的结构可靠度计算方法

doi: 10.13700/j.bh.1001-5965.2020.0251
基金项目: 

国家自然科学基金 51675026

详细信息
    通讯作者:

    张建国. E-mail: zjg@buaa.edu.cn

  • 中图分类号: TB114.3

Structural reliability calculation method based on improved weighted response surface

Funds: 

National Natural Science Foundation of China 51675026

More Information
  • 摘要:

    在结构可靠度分析中,响应面法由于具有良好的适用性和可操作性,是目前广泛使用的基于代理模型的分析方法。针对响应面法的计算效率和精度难以平衡兼顾等难点问题,提出一种基于改进加权响应面的结构可靠度计算方法。首先,在迭代过程中,同时考虑样本点与验算点距离、极限状态函数值、联合概率密度函数值3个权重因子对样本点进行赋权,采用加权回归并重复利用已有样本点更新不含交叉项的二次多项式响应面函数。其次,在迭代收敛后,选取已有样本点中权重较大的样本点加权拟合含有交叉项的二次多项式响应面函数。最后,结合数值算例和工程案例,通过与传统抽样方法和其他响应面法进行对比,验证了改进加权响应面法的可行性。结果表明所提方法具有较高效率的同时也保证了精度。

     

  • 图 1  非线性加权响应面法流程[22]

    Figure 1.  Flowchart of weighted nonlinear response surface method[22]

    图 2  改进加权响应面法流程

    Figure 2.  Flowchart of improved weighted response surface method

    图 3  算例1求解过程

    Figure 3.  Solving process of Example 1

    图 4  带有集中力的悬臂梁

    Figure 4.  A cantilever beam with concentrated force

    图 5  算例2求解过程

    Figure 5.  Solving process of Example 2

    图 6  十杆桁架结构

    Figure 6.  Ten-bar truss structure

    图 7  十杆桁架ANSYS仿真结果

    Figure 7.  ANSYS simulation results of ten-bar truss

    图 8  算例3求解过程

    Figure 8.  Solving process of Example 3

    表  1  算例1计算结果比较

    Table  1.   Comparison of calculation results of Example 1

    方法 失效概率 误差/% 结构分析次数 计算时间/s
    蒙特卡罗法 0.003 622 0 10 000 000
    经典响应面法 0.003 369 6.985 09 30 0.061
    线性加权响应面法 0.003 362 7.178 36 20 0.023
    单加权响应面法 0.003 366 7.067 92 20 0.026
    双加权响应面法 0.003 393 6.322 37 20 0.034
    改进加权响应面法 0.003 689 1.849 81 15 0.048
    下载: 导出CSV

    表  2  算例2计算结果比较

    Table  2.   Comparison of calculation results of Example 2

    方法 失效概率 误差/% 结构分析次数 计算时间/s
    蒙特卡罗法 0.005 959 0 10 000 000
    经典响应面法 0.005 691 4.497 40 56 0.026
    线性加权响应面法 0.005 691 4.497 40 28 0.021
    单加权响应面法 0.005 689 4.530 96 49 0.031
    双加权响应面法 0.005 861 1.644 57 21 0.030
    改进加权响应面法 0.005 967 0.134 25 21 0.052
    下载: 导出CSV

    表  3  算例3计算结果比较

    Table  3.   Comparison of calculation results of Example 3

    方法 失效概率 误差/% 结构分析次数
    蒙特卡罗法[23] 0.844 20 0 100 000
    经典响应面法 0.836 41 0.922 77 196
    线性加权响应面法 0.879 58 4.199 10 21
    单加权响应面法 0.838 17 0.714 29 28
    双加权响应面法 0.836 32 0.933 43 49
    改进加权响应面法 0.848 89 0.555 56 21
    下载: 导出CSV
  • [1] 徐铭阳, 刘林江. 可靠度理论及一次二阶矩法概述[J]. 山西建筑, 2016, 42(8): 67-68. doi: 10.3969/j.issn.1009-6825.2016.08.035

    XU M Y, LIU L J. Illustration on reliability theory and first-order second-moment method[J]. Shanxi Architecture, 2016, 42(8): 67-68(in Chinese). doi: 10.3969/j.issn.1009-6825.2016.08.035
    [2] BREITUNG K. Asymptotic approximations for multinormal integrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366. doi: 10.1061/(ASCE)0733-9399(1984)110:3(357)
    [3] 张明. 结构可靠度分析——方法与程序[M]. 北京: 科学出版社, 2009: 68-77.

    ZHANG M. Structural reliability analysis: Methods and procedures[M]. Beijing: Science Press, 2009: 68-77(in Chinese).
    [4] 吕震宙, 宋淑芳, 李洪双, 等. 结构机构可靠性及可靠性灵敏度分析[M]. 北京: 科学出版社, 2009: 98-104.

    LV Z Z, SONG S F, LI H S, et al. Reliability and reliability sensitivity analysis of structural mechanism[M]. Beijing: Science Press, 2009: 98-104(in Chinese).
    [5] ROBERT C P, CASELLA G. Monte Carlo statistical methods[M]. 2nd ed. Berlin: Springer, 2004: 79-122.
    [6] 赵国藩. 工程结构可靠性理论与应用[M]. 大连: 大连理工大学出版社, 1996: 145-158.

    ZHAO G F. Reliability theory and its applications for engineering structures[M]. Dalian: Dalian University of Technology Press, 1996: 145-158(in Chinese).
    [7] BUCHER C G, BOURGUND U. A Fast and efficient response surface approach for structural reliability problems[J]. Structural Safety, 1990, 7(1): 57-66. doi: 10.1016/0167-4730(90)90012-E
    [8] RAJASHEKHAR M R, ELLINGWOOD B R. A new look at the response surface approach for reliability analysis[J]. Structural Safety, 1993, 12(3): 205-220. doi: 10.1016/0167-4730(93)90003-J
    [9] KAYMAZ I, MCMAHON C A. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2005, 20(1): 11-17. doi: 10.1016/j.probengmech.2004.05.005
    [10] 赵洁, 吕震宙. 隐式极限状态方程可靠性分析的加权响应面法[J]. 机械强度, 2006, 28(4): 512-516. doi: 10.3321/j.issn:1001-9669.2006.04.009

    ZHAO J, LV Z Z. Response surface method for reliability analysis of implicit limit state equation based on weighted regression[J]. Journal of Mechanical Strength, 2006, 28(4): 512-516(in Chinese). doi: 10.3321/j.issn:1001-9669.2006.04.009
    [11] NGUYEN X A, SELLIER A, DUPRAT F, et al. Adaptive response surface method based on a double weighted regression technique[J]. Probabilistic Engineering Mechanics, 2009, 24(2): 135-143. doi: 10.1016/j.probengmech.2008.04.001
    [12] 李贵杰, 吕震宙, 赵新攀. 基于加权线性响应面的结构可靠性估计的鞍点逼近方法[J]. 机械强度, 2010, 32(6): 917-921. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201006009.htm

    LI G J, LV Z Z, ZHAO X P. Saddlepoint approximation of structural reliability on weighted linear response surface method[J]. Journal of Mechanical Strength, 2010, 32(6): 917-921(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201006009.htm
    [13] 钟宏林, 吴剑国, 王恒军. 可靠性分析的双加权响应面法[J]. 浙江工业大学学报, 2010, 38(2): 218-221. doi: 10.3969/j.issn.1006-4303.2010.02.021

    ZHONG H L, WU J G, WANG H J. Reliability analysis of response surface method based on a double weighted regression technique[J]. Journal of Zhejiang University of Technology, 2010, 38(2): 218-221(in Chinese). doi: 10.3969/j.issn.1006-4303.2010.02.021
    [14] 李广博. Fourier正交基神经网络加权响应面法的结构可靠性分析[D]. 长春: 吉林大学, 2014: 37-41.

    LI G B. Structural reliability analysis based on Fourier orthogonal neural network weighted response surface method[D]. Changchun: Jilin University, 2014: 37-41(in Chinese).
    [15] 张吉宁, 郭书祥, 唐承, 等. 基于向量投影取样的改进加权响应面法[J]. 科学通报, 2017, 62(17): 1854-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201717009.htm

    ZHANG J N, GUO S X, TANG C, et al. An improved weighted response surface method based on vector projection sampling[J]. Chinese Science Bulletin, 2017, 62(17): 1854-1860(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201717009.htm
    [16] 张学刚. 一种改进响应面法结构可靠度计算方法[J]. 机械强度, 2018, 40(6): 1382-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201806044.htm

    ZHANG X G. Structural reliability analysis based on an improvement of the response surface method[J]. Journal of Mechanical Strength, 2018, 40(6): 1382-1388(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201806044.htm
    [17] 贾长安. 基于随机变量相关和失效模式相关的结构可靠性算法研究[D]. 西安: 西安电子科技大学, 2018: 34-41.

    JIA C A. The study on structural reliability algorithm based on random variable correlation and failure mode correlation[D]. Xi'an: Xidian University, 2018: 34-41(in Chinese).
    [18] 侯振兴. 基于响应面法的结构可靠度计算方法研究[D]. 秦皇岛: 燕山大学, 2019: 20-23.

    HOU Z X. Research on structural reliability calculation method based on response surface method[D]. Qinhuangdao: Yanshan University, 2019: 20-23(in Chinese).
    [19] LU C, FENG Y W, FEI C W. Weighted regression-based extremum response surface method for structural dynamic fuzzy reliability analysis[J]. Energies, 2019, 12(9): 1-16. http://www.researchgate.net/publication/332685745_Weighted_Regression-Based_Extremum_Response_Surface_Method_for_Structural_Dynamic_Fuzzy_Reliability_Analysis
    [20] 洪林雄, 李华聪, 彭凯, 等. 基于高效搜索方法的可靠性分析改进响应面法[J]. 北京航空航天大学学报, 2020, 46(1): 95-102. doi: 10.13700/j.bh.1001-5965.2019.0169

    HONG L X, LI H C, PENG K, et al. Improved response surface method of reliability analysis based on efficient search method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 95-102(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0169
    [21] 冯欢欢, 蒋向华. 样本重复使用失效响应曲线分析结构可靠度方法[J]. 航空动力学报, 2013, 28(10): 2228-2234. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201310011.htm

    FENG H H, JIANG X H. Sample points reused failure response curve method for structural reliability analysis[J]. Journal of Aerospace Power, 2013, 28(10): 2228-2234(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201310011.htm
    [22] 赵洁. 机械可靠性分析的响应面法研究[D]. 西安: 西北工业大学, 2006: 23-27.

    ZHAO J. Research on response surface method of mechanical reliability analysis[D]. Xi'an: Northwestern Polytechnical University, 2006: 23-27(in Chinese).
    [23] CHOI S K, CANFIELD R A, GRANDHI R. Reliability-based structural design[M]. Berlin: Springer, 2007: 138-141.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  200
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 录用日期:  2020-08-07
  • 网络出版日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答