留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动静液作动器的新型变阻尼级联滑模控制

王明康 付永领 赵江澳 杨荣荣

王明康, 付永领, 赵江澳, 等 . 电动静液作动器的新型变阻尼级联滑模控制[J]. 北京航空航天大学学报, 2021, 47(8): 1612-1618. doi: 10.13700/j.bh.1001-5965.2020.0252
引用本文: 王明康, 付永领, 赵江澳, 等 . 电动静液作动器的新型变阻尼级联滑模控制[J]. 北京航空航天大学学报, 2021, 47(8): 1612-1618. doi: 10.13700/j.bh.1001-5965.2020.0252
WANG Mingkang, FU Yongling, ZHAO Jiang'ao, et al. Novel damping-variable sliding mode cascade control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1612-1618. doi: 10.13700/j.bh.1001-5965.2020.0252(in Chinese)
Citation: WANG Mingkang, FU Yongling, ZHAO Jiang'ao, et al. Novel damping-variable sliding mode cascade control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1612-1618. doi: 10.13700/j.bh.1001-5965.2020.0252(in Chinese)

电动静液作动器的新型变阻尼级联滑模控制

doi: 10.13700/j.bh.1001-5965.2020.0252
详细信息
    通讯作者:

    付永领. E-mail: wmk_buaa@163.com

  • 中图分类号: TH137

Novel damping-variable sliding mode cascade control for electro-hydrostatic actuator

More Information
  • 摘要:

    为改善电动静液作动器(EHA)的动态性能,提出了一种基于新型准自适应变阻尼滑模控制(DV-SMC)和PID控制的级联控制(CC)算法。所提算法将高阶EHA分为液压和机械2个低阶系统,分别对2个低阶系统采用了DV-SMC和双环PID控制策略。DV-SMC方法能够自适应调整滑模面阻尼。在起始阶段采用欠阻尼、末段自适应调节为过阻尼,从而在保证EHA快速性的同时也能够完全抑制超调现象。通过仿真验证了所提算法的有效性,并讨论给出了DV-SMC滑模面最优参数。

     

  • 图 1  EHA原理图

    Figure 1.  Schematic diagram of an EHA

    图 2  阻尼比的影响随敏感因子变化示意图

    Figure 2.  Schematic diagram of damping ratio influence changing with sensitivity factor

    图 3  级联控制算法原理框图

    Figure 3.  Schematic diagram of proposed cascade control algorithm

    图 4  EHA不同幅值阶跃信号的响应

    Figure 4.  Response of EHA step signals with different amplitudes

    图 5  15 mm阶跃EHA控制量输入仿真结果

    Figure 5.  Simulation results of EHA control input with 15 mm step signal

    图 6  变阻尼滑模面

    Figure 6.  Damping-variable sliding mode surface

    图 7  ξmax不同取值的阶跃响应

    Figure 7.  Step response with different values of ξmax

    表  1  EHA模型参数

    Table  1.   Parameters of EHA model

    参数 数值
    活塞有效面积A/m2 1.134×10-3
    有效行程/m 0.1
    油缸内泄系数Lc/(m3·(s·Pa-1)-1) 2.5×10-11
    油液弹性模量βe/(N·m-2) 6.86×108
    容腔有效体积V0/m3 4×10-4
    油缸黏性摩擦系数Bc/(N·(m·s-1)-1) 1 000
    油缸及负载质量M/kg 243
    柱塞泵排量Dp/(m3·rad-1) 3.98×10-7
    电机黏性摩擦系数Bm/(N·m·(rad·s-1)-1) 6×10-4
    线电阻R 0.2
    线电感L/mH 1.33
    柱塞泵和电机转动惯量Ja/(kg·m2) 4×10-4
    电机扭矩系数Kt/(N·m·A-1) 0.351
    反电动势系数Ke/(V·(rad·s-1)-1) 0.234
    弹性负载系数Ks/(N·m-1) 8×108
    母线电压/VDC 270
    下载: 导出CSV
  • [1] QI H T, FU Y L, QI X Y, et al. Architecture optimization of more electric aircraft actuation system[J]. Chinese Journal of Aeronautics, 2011, 24(4): 506-513. doi: 10.1016/S1000-9361(11)60058-7
    [2] MARE J, FU J. Review on signal-by-wire and power-by-wire actuation for more electric aircraft[J]. Chinese Journal of Aeronautics, 2017, 30(3): 857-870. doi: 10.1016/j.cja.2017.03.013
    [3] ALLE N, HIREMATH S S, MAKARAM S, et al. Review on electro hydrostatic actuator for flight control[J]. International Journal of Fluid Power, 2016, 17(2): 125-145. doi: 10.1080/14399776.2016.1169743
    [4] NAVATHAA A, BELLADA K, HIREMATHA S S, et al. Dynamic analysis of electro hydrostatic actuation system[J]. Procedia Technology, 2016, 25: 1289-1296. doi: 10.1016/j.protcy.2016.08.223
    [5] YAO Z K, YAO J Y, YAO F Y, et al. Model reference adaptive tracking control for hydraulic servo systems with nonlinear neural-networks[J]. ISA Transactions, 2019, 100: 396-404. http://www.sciencedirect.com/science/article/pii/S001905781930521X
    [6] WANG C W, QUAN L, JIAO Z X, et al. Nonlinear adaptive control of hydraulic system with observing and compensating mismatching uncertainties[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 927-937. doi: 10.1109/TCST.2017.2699166
    [7] 寇荣发. EHA汽车电控主动悬架的模糊控制实验[J]. 西安科技大学学报, 2009, 29(5): 589-594. doi: 10.3969/j.issn.1672-9315.2009.05.017

    KOU R F. Test on fuzzy control for vehicle active suspension with EHA[J]. Journal of Xi'an University of Science and Technology, 2009, 29(5): 589-594(in Chinese). doi: 10.3969/j.issn.1672-9315.2009.05.017
    [8] 张振, 李海军, 诸德放. EHA反馈线性化最优滑模面双模糊滑模控制[J]. 北京航空航天大学学报, 2016, 42(7): 1398-1405. doi: 10.13700/j.bh.1001-5965.2015.0454

    ZHANG Z, LI H J, ZHU D F. Double fuzzy sliding mode control for EHA based on feedback linearization optimal sliding surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1398-1405(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0454
    [9] YANG R R, FU Y L, ZHANG L, et al. A novel sliding mode control framework for electrohydrostatic actuator[J]. Mathematical Problems in Engineering, 2018(11): 1-22.
    [10] ALEMU A E, FU Y L. Sliding mode control of electro-hydrostatic actuator based on extended state observer[C]//29th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2017: 758-763.
    [11] WANG S, HABIBI S, BURTON R. Sliding mode control for an electrohydraulic actuator system with discontinuous non-linear friction[J]. Journal of Systems and Control Engineering, 2008, 222(8): 799-815. http://www.researchgate.net/publication/245389662_Sliding_mode_control_for_an_electrohydraulic_actuator_system_with_discontinuous_non-linear_friction
    [12] SOON C C, GHAZALI R, JAAFAR H I, et al. Sliding mode controller design with optimized PID sliding surface using particle swarm algorithm[J]. Procedia Computer Science, 2017, 105: 235-239. doi: 10.1016/j.procs.2017.01.216
    [13] 张英臣, 祁晓野. 基于PID和滑模控制的电动静液作动器的研究[J]. 机床与液压, 2017, 45(21): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201721029.htm

    ZHANG Y C, QI X Y. Study of electro-hydraulic actuator based on PID and sliding mode control[J]. Machine Tool & Hydraulics, 2017, 45(21): 122-126(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201721029.htm
    [14] AHN K K, NAM D N C, JIN M L. Adaptive backstepping control of an electrohydarulic actuator[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 987-995. doi: 10.1109/TMECH.2013.2265312
    [15] REN G G, ESFANDIARI M, SONG J C, et al. Position control of an electrohydrostatic actuator with tolerance to internal leakage[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2224-2232. doi: 10.1109/TCST.2016.2517568
    [16] ZHANG H, LIU X T, WANG J M, et al. Robust H sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system[J]. International Journal of Advanced Manufacturing Technology, 2014, 73: 1095-1104.
    [17] 王永宾, 林辉. 基于滑模控制的机载作动器摩擦转矩补偿研究[J]. 中国机械工程, 2010, 21(7): 809-814. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201007011.htm

    WANG Y B, LIN H. Friction compensation of aircraft actuator based on sliding model control[J]. China Mechanical Engineering, 2010, 21(7): 809-814(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201007011.htm
    [18] 李小虎, 王孙安, 张育林, 等. 基于反馈变结构控制电动静液作动器的研究[J]. 机床与液压, 2008, 36(12): 71-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY200812027.htm

    LI X H, WANG S A, ZHANG Y L, et al. Study on sliding mode control based on feedback for electro-hydrostatic actuator[J]. Machine Tool & Hydraulics, 2008, 36(12): 71-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY200812027.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  12
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 录用日期:  2020-09-30
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答