留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空条件下多孔平板发汗冷却试验研究

陈星宇 王丽燕 陈伟华 王振峰 曹占伟 高扬

陈星宇, 王丽燕, 陈伟华, 等 . 真空条件下多孔平板发汗冷却试验研究[J]. 北京航空航天大学学报, 2021, 47(8): 1594-1604. doi: 10.13700/j.bh.1001-5965.2020.0257
引用本文: 陈星宇, 王丽燕, 陈伟华, 等 . 真空条件下多孔平板发汗冷却试验研究[J]. 北京航空航天大学学报, 2021, 47(8): 1594-1604. doi: 10.13700/j.bh.1001-5965.2020.0257
CHEN Xingyu, WANG Liyan, CHEN Weihua, et al. Transpiration cooling test of porous plate in vacuum environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1594-1604. doi: 10.13700/j.bh.1001-5965.2020.0257(in Chinese)
Citation: CHEN Xingyu, WANG Liyan, CHEN Weihua, et al. Transpiration cooling test of porous plate in vacuum environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1594-1604. doi: 10.13700/j.bh.1001-5965.2020.0257(in Chinese)

真空条件下多孔平板发汗冷却试验研究

doi: 10.13700/j.bh.1001-5965.2020.0257
基金项目: 

科学技术委员会基础加强类项目 0327004

详细信息
    通讯作者:

    王丽燕. E-mail: wang_liyan12@163.com

  • 中图分类号: V258

Transpiration cooling test of porous plate in vacuum environment

Funds: 

Basic Research Project of Science and Technology Commission 0327004

More Information
  • 摘要:

    发汗冷却是解决高速飞行器关键部位热防护问题的有效途径。以不同材料的多孔平板为研究对象,以水为冷却剂,利用自行设计搭建的试验平台对多孔平板发汗冷却过程进行瞬态试验测量,得到了不同热流加热环境下不同材料多孔平板内外壁温度变化,并分析冷却剂对不同材料的冷却效果。结果表明:发汗冷却极大降低了多孔平板内外壁温度,起到了有效的主动热防护作用。对于镍、铜金属多孔平板,保持冷却剂水流量约3.5 g/s,在热流密度小于120 kW/m2的条件下,多孔平板内外壁温度稳定在30~50℃。对于陶瓷多孔平板,保持冷却剂水流量约0.32 g/s,在热流密度小于220 kW/m2的条件下,多孔平板内外壁温度基本稳定在30~40℃。在高热流密度315 kW/m2的条件下,对于镍、铜金属和陶瓷多孔平板,发汗冷却时平板内壁温度变化不大,外壁温度分别稳定在约260℃、110℃和130℃。外壁冷却剂处于完全汽化状态,且冷却剂汽化相变位置在多孔平板内部。若无发汗冷却,多孔平板内外壁温度快速升高,其平衡温度较有发汗冷却时大幅提高,进一步表明发汗冷却的巨大应用潜力。

     

  • 图 1  试验系统

    Figure 1.  Experimental system

    图 2  多孔平板内外壁温度测点位置示意

    Figure 2.  Location of temperature measurement points on inter and outer wall of plate

    图 3  多孔平板

    Figure 3.  Porous plate

    图 4  试验件工装结构

    Figure 4.  Structure of test piece tooling

    图 5  50 kW/m2状态镍金属多孔平板内外壁温度随时间变化

    Figure 5.  Temperature of inner and outer walls of nickel metal porous plate changing with time at 50 kW/m2

    图 6  50 kW/m2状态镍金属多孔平板腔内水温和冷却水流量随时间变化

    Figure 6.  Water temperature of inner cavity and cooling water flow rate of nickel metal porous plate changing with time at 50 kW/m2

    图 7  50 kW/m2状态镍金属多孔平板无发汗冷却内外壁温度随时间变化

    Figure 7.  Temperature of inner and outer walls of nickel metal porous plate changing with time without transpiration cooling at 50 kW/m2

    图 8  100 kW/m2状态镍金属多孔平板内外壁温度随时间变化

    Figure 8.  Temperature of inner and outer walls of nickel metal porous plate changing with time at 100 kW/m2

    图 9  100 kW/m2状态镍金属多孔平板腔内水温和冷却水流量随时间变化

    Figure 9.  Water temperature of inner cavity and cooling water flow rate of nickel metal porous plate changing with time at 100 kW/m2

    图 10  100 kW/m2状态镍金属多孔平板无发汗冷却内外壁温度随时间变化

    Figure 10.  Temperature of inner and outer walls of nickel metal porous plate changing with time without transpiration cooling at 100 kW/m2

    图 11  315 kW/m2状态镍金属多孔平板内外壁温度随时间变化

    Figure 11.  Temperature of inner and outer walls of nickel metal porous plate changing with time at 315 kW/m2

    图 12  315 kW/m2状态镍金属多孔平板腔内水温和冷却水流量随时间变化

    Figure 12.  Water temperature of inner cavity and cooling water flow rate of nickel metal porous plate changing with time at 315 kW/m2

    图 13  50 kW/m2状态铜金属多孔平板内外壁温度随时间变化

    Figure 13.  Temperature of inner and outer walls of copper metal porous plate changing with time at 50 kW/m2

    图 14  50 kW/m2状态铜金属多孔平板腔内水温和冷却水流量随时间变化

    Figure 14.  Water temperature of inner cavity and cooling water flow rate of copper metal porous plate changing with time at 50 kW/m2

    图 15  100 kW/m2状态铜金属多孔平板内外壁温度随时间变化

    Figure 15.  Temperature of inner and outer walls of copper metal porous plate changing with time at 100 kW/m2

    图 16  100 kW/m2状态铜金属多孔平板腔内水温和水流量随时间变化

    Figure 16.  Water temperature of inner cavity and water flow rate of copper metal porous plate changing with time at 100 kW/m2

    图 17  100 kW/m2状态铜金属多孔平板无发汗冷却内外壁温度随时间变化

    Figure 17.  Temperature of inner and outer walls of copper metal porous plate changing with time without transpiration cooling at 100 kW/m2

    图 18  120 kW/m2状态铜金属多孔平板内外壁温度随时间变化

    Figure 18.  Temperature of inner and outer walls of copper metal porous plate changing with time at 120 kW/m2

    图 19  120 kW/m2状态铜金属多孔平板腔内水温和水流量随时间变化

    Figure 19.  Water temperature of inner cavity and water flow rate of copper metal porous plate changing with time at 120 kW/m2

    图 20  315 kW/m2状态铜金属多孔平板内外壁温度随时间变化

    Figure 20.  Temperature of inner and outer walls of copper metal porous plate changing with time at 315 kW/m2

    图 21  315 kW/m2状态铜金属多孔平板腔内水温和冷却水流量随时间变化

    Figure 21.  Water temperature of inner cavity and cooling water flow rate of copper metal porous plate changing with time at 315 kW/m2

    图 22  315 kW/m2状态铜金属多孔平板无发汗冷却内外壁温度随时间变化

    Figure 22.  Temperature of inner and outer walls of copper metal porous plate changing with time without transpiration cooling at 315 kW/m2

    图 23  陶瓷多孔平板内外壁温度随热流变化

    Figure 23.  Temperature of inner and outer walls of ceramic porous plate changing with heat flux

    图 24  积液腔压力随时间变化

    Figure 24.  Pressure in fluid chamber changing with time

    图 25  不同加热条件下发汗冷却现象

    Figure 25.  Transpiration cooling under different heating conditions

    表  1  多孔平板物性参数

    Table  1.   Physical parameters of porous plates

    参数 陶瓷多孔材料 铜金属多孔材料 镍金属多孔材料
    孔隙率/% 43 37.3 34.2
    热导率/(W·(m·K)-1) 1.337 83.1 71.4
    比热/(kJ·(kg·K)-1) 0.71 377 133
    压缩强度/MPa 38.4 34.3 72.2
    下载: 导出CSV
  • [1] 伍楠. 发散冷却关键问题的实验和数值研究[D]. 合肥: 中国科学技术大学, 2019.

    WU N. Experimental and numerical investigations on the key problems of transpiration cooling[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [2] STEELANT J. ATLLAS: Aero-thermal loaded material investigations for high-speed vehicles: AIAA 2008-2582[R]. Reston: AIAA, 2008.
    [3] BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536. doi: 10.1016/S0376-0421(03)00079-4
    [4] THIELBAHR W H, KAYS W M, MOFFAT R J. The turbulent boundary layer on a porous plate: Experimental heat transfer with uniform blowing and suction, with moderately strong acceleration[J]. Journal of Heat Transfer, 1972, 94(1): 111-118. doi: 10.1115/1.3449858
    [5] SIMPSON R L, MOFFAT R J, KAYS W M. The turbulent boundary layer on a porous plate: Experimental skin friction with variable injection and suction[J]. International Journal of Heat and Mass Transfer, 1969, 12(7): 771-789. doi: 10.1016/0017-9310(69)90181-1
    [6] BELLETTRE J, BATAILLE E, LALLEMAND A, et al. Studies of the transpiration cooling through a sintered stainless steel plate[J]. Experimental Heat Transfer, 2005, 18(1): 33-44. doi: 10.1080/08916150590884835
    [7] 余磊, 姜培学, 任泽霈. 发汗冷却换热过程的实验研究与数值模拟[J]. 工程热物理学报, 2005, 26(1): 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200501026.htm

    YU L, JIANG P X, REN Z P. Experimental investigation and numerical simulation of convection heat transfer in transpiration cooling[J]. Journal of Engineering Thermophysics, 2005, 26(1): 95-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200501026.htm
    [8] 金韶山. 液体火箭发动机推力室及钝体头锥发汗冷却研究[D]. 北京: 清华大学, 2008.

    JIN S S. Research on transpiration cooling of liquid rocket thrust chamber and blunt nose cone[D]. Beijing: Tsinghua University, 2008(in Chinese).
    [9] LIU Y Q, JIANG P, JIN S, et al. Transpiration cooling of a nose cone by various foreign gases[J]. International Journal of Heat and Mass Transfer, 2010, 53(23-24): 5364-5372. doi: 10.1016/j.ijheatmasstransfer.2010.07.019
    [10] BOEHRK H. Transpiration cooling at hypersonic flight-AKTiV on SHEFEX Ⅱ: AIAA 2014-2676[R]. Reston: AIAA, 2014.
    [11] LANGENER T, VON WOLFERSDORF J, STEELANT J. Experimental investigations on transpiration cooling for scramjet applications using different coolants[J]. AIAA Journal, 2011, 49(7): 1409-1419. doi: 10.2514/1.J050698
    [12] VAN FOREEST A, SIPPEL M, GVLHAN A, et al. Transpiration cooling using liquid water[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(4): 693-702. doi: 10.2514/1.39070
    [13] 黄干, 廖致远, 祝银海, 等. 高温主流条件下相变发汗冷却实验研究[J]. 工程热物理学报, 2017, 38(4): 817-821. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201704022.htm

    HUANG G, LIAO Z Y, ZHU Y H, et al. Experimental investigation of transpiration cooling with phase change in high temperature flow[J]. Journal of Engineering Thermophysics, 2017, 38(4): 817-821(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201704022.htm
    [14] 吴亚东, 朱广生, 高波, 等. 多孔介质相变发汗冷却主动热防护试验研究[J]. 宇航学报, 2017, 38(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702014.htm

    WU Y D, ZHU G S, GAO B, et al. An experimental study on the phase-changed transpiration cooling for active thermal protection[J]. Journal of Astronautics, 2017, 38(2): 212-218(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702014.htm
    [15] 熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京: 清华大学, 2013.

    XIONG Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Beijing: Tsinghua University, 2013(in Chinese).
    [16] 孟松鹤, 党晓雪, 丁小恒, 等. 多孔C/C材料发汗冷却实验研究[J]. 固体火箭技术, 2015, 38(1): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201501021.htm

    MENG S H, DANG X X, DING X H, et al. Transpiration cooling tests of porous C/C[J]. Journal of Solid Rocket Technology, 2015, 38(1): 102-106(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201501021.htm
    [17] WANG J, ZHAO L, WANG X, et al. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2014, 75: 442-449. doi: 10.1016/j.ijheatmasstransfer.2014.03.076
    [18] HE F, WANG J H. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change[J]. Energy Conversion and Management, 2014, 80: 591-597. doi: 10.1016/j.enconman.2014.02.003
    [19] DING R, WANG J, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146: 422-431. doi: 10.1016/j.applthermaleng.2018.09.134
    [20] JIANG P, LIAO Z, HUANG Z, et al. Influence of shock waves on supersonic transpiration cooling[J]. International Journal of Heat and Mass Transfer, 2019, 129: 965-974. http://www.sciencedirect.com/science/article/pii/S0017931018312997
    [21] XIAO X, ZHAO G, ZHOU W. Numerical investigation of transpiration cooling for porous nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1297-1306. doi: 10.1016/j.ijheatmasstransfer.2018.01.029
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  796
  • HTML全文浏览量:  140
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 录用日期:  2020-09-04
  • 网络出版日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答