留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MSCSG随机误差测试及误差源分析

耿梦梦 任元 樊亚洪 王丽芬 于春淼

耿梦梦, 任元, 樊亚洪, 等 . MSCSG随机误差测试及误差源分析[J]. 北京航空航天大学学报, 2021, 47(8): 1697-1704. doi: 10.13700/j.bh.1001-5965.2020.0269
引用本文: 耿梦梦, 任元, 樊亚洪, 等 . MSCSG随机误差测试及误差源分析[J]. 北京航空航天大学学报, 2021, 47(8): 1697-1704. doi: 10.13700/j.bh.1001-5965.2020.0269
GENG Mengmeng, REN Yuan, FAN Yahong, et al. Random error test and error source analysis of MSCSG[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1697-1704. doi: 10.13700/j.bh.1001-5965.2020.0269(in Chinese)
Citation: GENG Mengmeng, REN Yuan, FAN Yahong, et al. Random error test and error source analysis of MSCSG[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1697-1704. doi: 10.13700/j.bh.1001-5965.2020.0269(in Chinese)

MSCSG随机误差测试及误差源分析

doi: 10.13700/j.bh.1001-5965.2020.0269
基金项目: 

国家自然科学基金 51475472

国家自然科学基金 51605489

详细信息
    通讯作者:

    任元. E-mail: renyuan_823@aliyun.com

  • 中图分类号: V448.2

Random error test and error source analysis of MSCSG

Funds: 

National Natural Science Foundation of China 51475472

National Natural Science Foundation of China 51605489

More Information
  • 摘要:

    针对磁悬浮控制敏感陀螺(MSCSG)的角速率测量信号中存在较大的随机误差,不利于提高MSCSG敏感精度,以MSCSG原理样机为研究对象,提出采用Allan方差分析法对MSCSG实测数据进行随机误差分析。首先,根据MSCSG角速率敏感原理推导出MSCSG转子偏转角速率的量测公式;其次,应用Allan方差分析法和最小二乘拟合方法计算出5种典型随机误差系数。计算结果显示:在MSCSG随机误差中,零偏不稳定性、速率随机游走以及速率斜坡占主要成分,而量化噪声和角度随机游走误差所占比重较小。依此,对MSCSG误差来源进行了指向性分析,并给出了随机误差的抑制补偿方法,为MSCSG敏感精度的提高奠定了理论基础。

     

  • 图 1  MSCSG机械结构图

    Figure 1.  Mechanical structure of MSCSG

    图 2  LFMB工作原理图

    Figure 2.  Schematic diagram of LFMB

    图 3  MSCSG原理样机的测试实验实物图

    Figure 3.  Experimental photo of MSCSG prototype

    图 4  MSCSG采样输出曲线

    Figure 4.  Sample output curves of MSCSG

    图 5  MSCSG的Allan标准差双对数及拟合曲线图

    Figure 5.  Double logarithm of Allan standard deviation and fitting curve of MSCSG

    图 6  误差补偿前后Allan标准差对比曲线图

    Figure 6.  Comparison of Allan standard deviation before and after error compensation

    表  1  Allan标准差与5项典型误差的对应关系

    Table  1.   Corresponding relations between Allan standard deviation and five typical errors

    随机误差项 Allan标准差
    量化噪声Q/(°)
    零偏不稳定性B/((°)·h-1) σB=B/0.664 8
    速率斜坡R/((°)·h-2)
    注:τ为时间变量。
    下载: 导出CSV

    表  2  MSCSG各项随机误差统计

    Table  2.   Statistics of random errors in MSCSG

    随机误差项 结果
    量化噪声Q/(°) 0.963 036
    2.525 648
    零偏不稳定性B/((°)·h-1) 12.023 988
    32.724 570
    速率斜坡R/((°)·h-2) 38.789 995
    下载: 导出CSV

    表  3  误差补偿后MSCSG各项随机误差统计

    Table  3.   Statistics of random errors of MSCSG after error compensation

    随机误差项 补偿后结果 误差降低率/%
    量化噪声Q/(°) 0.916 159 4.87
    2.365 199 6.35
    零偏不稳定性B/((°)·h-1) 3.235 266 73.09
    10.682 979 36.80
    速率斜坡R/((°)·h-2) 23.970 946 38.20
    下载: 导出CSV
  • [1] 任元, 王卫杰, 刘强, 等. 一种磁悬浮控制敏陀螺: 中国, ZL201510006597.5[P]. 2017-04-28.

    REN Y, WANG W J, LIU Q, et al. A kind of magnetically suspended control sensitive gyroscope: China, ZL201510006597.5[P]. 2017-04-28(in Chinese).
    [2] 夏长峰, 蔡远文, 任元, 等. MSCSG转子不平衡振动原理分析与建模[J]. 北京航空航天大学学报, 2018, 44(11): 2321-2328. doi: 10.13700/j.bh.1001-5965.2018.0044

    XIA C F, CAI Y W, REN Y, et al. Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2321-2328(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0044
    [3] ZHENG S Q, LI H T, HAN B C, et al. Power consumption reduction for magnetic bearing systems during torque output of control moment gyros[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5752-5759. doi: 10.1109/TPEL.2016.2608660
    [4] HAN B C, ZHENG S Q, LI H T, et al. Weight-reduction design based on integrated radial-axial magnetic bearing of a large-scale MSCMG for space station application[J]. IEEE Transactions on Industrial Electronics, 2016, 64(3): 2205-2214. http://ieeexplore.ieee.org/document/7739998
    [5] LIU X K, ZHAO H, YAO Y, et al. Modeling and analysis of micro-spacecraft attitude sensing with gyrowheel[J]. Sensors, 2016, 16(8): 1321. doi: 10.3390/s16081321
    [6] FANG J C, ZHENG S Q, HAN B C. Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 338-348. doi: 10.1109/TIM.2011.2164289
    [7] 霍元正. MEMS陀螺仪随机漂移误差补偿技术的研究[D]. 南京: 东南大学, 2015: 12-19.

    HUO Y Z. Research in measurement of MEMS gyroscope random drift compensation[D]. Nanjing: Southeast University, 2015: 12-19(in Chinese).
    [8] 熊必凤. 低成本MEMS陀螺仪随机漂移误差的建模及修正[D]. 重庆: 西南大学, 2017: 13-16.

    XIONG B F. Modeling and correction of random drift error of low cost MEMS gyroscope[D]. Chongqing: Southwest University, 2017: 13-16(in Chinese).
    [9] ALLAN D W, LEVINE J. A historical perspective on the development of the allan variances and their strengths and weaknesses[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(4): 513-519. doi: 10.1109/TUFFC.2016.2524687
    [10] REN Y F, KE X Z, LIU Y J. MEMS gyroscope performance estimate based on allan variance[C]//2007 8th International Conference on Electronic Measurement and Instruments. Piscataway: IEEE Press, 2007: 301-304.
    [11] 杜少林, 陈书钊, 陈鹏光, 等. 基于Allan方差的MEMS陀螺仪噪声分析[J]. 仪表技术与传感器, 2018(5): 20-22, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201805005.htm

    DU S L, CHEN S Z, CHEN P G, et al. Analysis of MEMS gyroscope noise based on allan variance[J]. Instrument Technique and Sensor, 2018(5): 20-22, 27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201805005.htm
    [12] 马群, 王庆, 阳媛, 等. 基于Allan方差的MEMS陀螺仪随机误差辨识与抑制[J]. 传感器与微系统, 2019, 38(6): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201906018.htm

    MA Q, WANG Q, YANG Y, et al. Random error identification and suppression of MEMS gyroscope based on Allan variance[J]. Transducer and Microsystem Technologies, 2019, 38(6): 62-65(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201906018.htm
    [13] 贾瑞才. 低成本IMU误差辨识与补偿算法[J]. 四川兵工学报, 2014, 35(5): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201405028.htm

    JIA R C. Algorithm of error identification and compensation for low cost IMU[J]. Journal of Sichuan Ordnance, 2014, 35(5): 97-101(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201405028.htm
    [14] 严恭敏, 李四海, 秦永元. 惯性仪器测试与数据分析[M]. 北京: 国防工业出版社, 2015: 142-143.

    YAN G M, LI S H, QIN Y Y. Inertial instrument test and data analysis[M]. Beijing: National Defense Industry Press, 2015: 142-143(in Chinese).
    [15] 夏长峰, 蔡远文, 任元, 等. MSCSG转子系统的扩展双频Bode图稳定性分析方法[J]. 宇航学报, 2018, 39(2): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201802008.htm

    XIA C F, CAI Y W, REN Y, et al. Stability analysis method with extended double-frequency bode diagram for rotor of MSCSG[J]. Journal of Astronautics, 2018, 39(2): 168-176(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201802008.htm
    [16] 辛朝军, 蔡远文, 任元, 等. 磁悬浮敏感陀螺动力学建模与关键误差源分析[J]. 北京航空航天大学学报, 2016, 42(10): 2048-2058. doi: 10.13700/j.bh.1001-5965.2015.0650

    XIN C J, CAI Y W, REN Y, et al. Dynamic modeling and key error sources analysis of magnetically suspended sensitive gyroscopes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2048-2058(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0650
    [17] YU C M, WANG Z, REN Y, et al. MSCSG two degree of freedom attitude measurement method[C]//Proceedings of the 2nd International Conference on Electrical, Control and Automation(ICECA2018). Beijing: Space Engineering University, 2018: 390-396.
    [18] 李磊, 任元, 陈晓岑, 等. 基于ADRC和RBF神经网络的MSCSG控制系统设计[J]. 北京航空航天大学学报, 2020, 46(10): 1966-1972. doi: 10.13700/j.bh.1001-5965.2019.0536

    LI L, REN Y, CHEN X C, et al. Design of MSCSG control system based on ADRC and RBF neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1966-1972(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0536
    [19] REN Y, CHEN X C, CAI Y W, et al. Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4921-4932. http://ieeexplore.ieee.org/document/8106733/
    [20] 中国人民解放军战略支援部队航天工程大学. 一种基于磁悬浮控制敏感陀螺平行构型的角运动测量方法: 中国,

    CN110068336A[P]. 2019-07-30. Space Engineering University, Strategic Support Force of the People's Liberation Army of China. Angular motion measuring method based on parallel configuration of magnetic suspension control sensitive gyroscopes: China, CN110068336A[P]. 2019-07-30(in Chinese).
    [21] 辛朝军. 磁悬浮控制敏感陀螺误差分析与补偿方法研究[D]. 北京: 航天工程大学, 2017: 121-162.

    XIN C J. Compensation method investigation and error analysis for a magnetically suspended control & sensing gyroscope[D]. Beijing: Space Engineering University, 2017: 121-162(in Chinese).
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  12
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 录用日期:  2020-07-03
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答