Performance reliability of multi-state navigation system based on T-S fuzzy fault tree
-
摘要:
考虑复杂多态导航系统在不同故障状态具有不同的性能可靠性,将T-S模糊故障树模型应用到多态导航系统性能分析中,以T-S模糊故障树表示系统的性能变量,映射为系统性能指标值,结合统计学中的期望思想,计算不同层次事件发生故障时系统的性能可靠性,并以典型的全球定位系统(GPS)和惯性定向定位导航系统(INS)相组合的导航系统进行分析建树,求解系统在多故障状态下的性能可靠性指标,并进行了实例分析。结果表明:无论底事件处于轻微还是严重故障状态,对系统性能都会产生影响,中间事件是导航系统的薄弱环节,即便是中间层轻微故障,也会引起系统性能可靠性较大的下降。
Abstract:The T-S fuzzy fault tree model is applied to the performance analysis of the multi-state navigation system, considering that complex multi-state system has different performance reliability in different fault states. The T-S fuzzy fault tree is used to represent the performance variables of the system and mapped to the performance index of the multi-state system. Combined with the expectation idea of statistics, the performance reliability of the system is calculated when the system is at different levels of failure event. The navigation system, combined with the typical Global Positioning System (GPS) and the Inertial Navigation System(INS), is used to analyze and build the tree to solve the problem of the system in the multi-fault state. The performance reliability index of the system is analyzed by making an example analysis. The results show that no matter whether the bottom event is in a minor or severe failure state, it will affect the system performance. The intermediate event is a weak link in the navigation system. Even a slight failure in the middle layer will cause a significant decrease in system performance reliability.
-
表 1 T-S门3规则
Table 1. Rules for T-S gate 3
规则 x1 x2 x3 y1 0 0.5 1 1 0 0 0 1 0 0 2 0 0 0.5 0.3 0.4 0.3 3 0 0 1 0.3 0.4 0.5 4 0 0.5 1 0.1 0.5 0.4 5 0 0.5 0.5 0.1 0.4 0.5 6 0 0.5 1 0 0 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 27 1 1 1 0 0 1 表 2 T-S门4规则
Table 2. Rules for T-S gate 4
规则 x4 x5 y2 0 0.5 1 1 0 0 1 0 0 2 0 0.5 0.2 0.5 0.3 3 0 1 0 0 1 4 0.5 0 0.2 0.4 0.4 5 0.5 0.5 0.1 0.3 0.6 6 0 0.5 0 0 1 7 1 0 0 0 1 8 1 0.5 0 0 1 9 1 1 0 0 1 表 3 不同故障状态下的定位精度
Table 3. Positioning accuracy for different fault conditions
顶事件T 故障状态(序号) WXi 1 0 0.002 3 2 0.5 0.012 2 3 1 0.030 3 表 4 底事件的模糊可能性
Table 4. Fuzzy possibility for base event
底事件 故障状态(序号) 模糊可能性 1 0.881 6 x2 2 0.059 2 3 0.059 2 1 0.908 5 x3 2 0.045 8 3 0.045 8 ⋮ ⋮ ⋮ 1 10.941 8 x8 2 20.029 1 3 30.029 1 表 5 中间事件的模糊可能性
Table 5. Fuzzy possibility for intermediate event
中间事件 故障状态(序号) 模糊可能性 1 0.956 0 y1 2 0.011 2 3 0.032 8 1 0.921 6 y2 2 0.022 6 3 0.055 8 表 6 顶事件的模糊可能性
Table 6. Fuzzy possibility for top event
顶事件 故障状态(序号) 模糊可能性 1 0.901 0 T 2 0.002 8 3 0.016 9 表 7 中间事件故障时顶事件的模糊可能性
Table 7. Fuzzy possibility for top event when intermediate event fails
顶事件 故障状态(序号) 模糊可能性 1 0.231 6 T 2 0.280 2 3 0.488 2 -
[1] 宋华, 张洪钺, 王行仁. T-S模糊故障树分析方法[J]. 控制与决策, 2005, 20(8): 854-859. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200508002.htmSONG H, ZHANG H Y, WANG X R. Fuzzy fault tree analysis based on T-S model[J]. Control and Decision, 2005, 20(8): 854-859(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200508002.htm [2] LEE W, GROSH D L, TILLMAN F A, et al. Fault tree analysis, methods, and applications: A review[J]. IEEE Transactions on Reliability, 1985, 34(3): 194-203. [3] 贾进章, 陈怡诺, 柯丁琳. 基于模糊集和改进DS证据理论的危化品道路运输体系贝叶斯网络风险分析[J]. 北京化工大学学报(自然科学版), 2020, 47(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY202001007.htmJIA J Z, CHEN Y N, KE D L. Risk analysis of a Bayesian network for harmful chemicals road transportation systems based on fuzzy sets and improved Dempster/Shafer (DS) evidence theory[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2020, 47(1): 38-45(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY202001007.htm [4] 崔铁军, 汪培庄. 空间故障树与因素空间融合的智能可靠性分析方法[J]. 智能系统学报, 2019, 14(5): 853-864. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201905002.htmCUI T J, WANG P Z. Intelligent reliability analysis method based on space fault tree and factor space[J]. CAAI Transactions on Intelligent Systems, 2019, 14(5): 853-864(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201905002.htm [5] 李景文, 乔建刚, 付旭, 等. 基于模糊故障树的抗浮锚杆系统失效分析[J]. 安全与环境学报, 2019, 19(4): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201904004.htmLI J W, QIAO J G, FU X, et al. Failure analysis of the anti-floating bolt system based on the fuzzy fault tree[J]. Journal of Safety and Environment, 2019, 19(4): 1128-1134(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201904004.htm [6] SONG H, ZHANG H Y, CHAN C W. Fuzzy fault tree analysis based on T-S model with application to INS/GPS navigation system[J]. Soft Computing, 2009, 13(1): 31-40. doi: 10.1007/s00500-008-0290-3 [7] LIN C, WANG M. Hybrid fault tree analysis using fuzzy sets[J]. Reliability Engineering and System Safety, 1997, 58(3): 205-213. doi: 10.1016/S0951-8320(97)00072-0 [8] QI J, HU X, GAO X. Quantitative risk analysis of subsea pipeline and riser: An experts' assessment approach using fuzzy fault tree[J]. International Journal of Reliability and Safety, 2014, 8(1): 33-50. doi: 10.1504/IJRS.2014.062639 [9] BROOKE P J, PAIGE R F. Fault trees for security system design and analysis[J]. Computers and Security, 2003, 22(3): 256-264. doi: 10.1016/S0167-4048(03)00313-4 [10] 姚成玉, 张荧驿, 王旭峰, 等. T-S模糊故障树重要度分析方法[J]. 中国机械工程, 2011, 22(11): 1261-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201111001.htmYAO C Y, ZHANG Y Y, WANG X F, et al. Importance analysis method of fuzzy fault tree based on T-S model[J]. China Mechanical Engineering, 2011, 22(11): 1261-1268(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201111001.htm [11] 陈东宁, 姚成玉, 党振. 基于T-S模糊故障树和贝叶斯网络的多态液压系统可靠性分析[J]. 中国机械工程, 2013, 24(7): 899-905. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201307010.htmCHEN D N, YAO C Y, DANG Z. Reliability analysis of multi-state hydraulic system based on T-S fuzzy fault tree and Bayesian network[J]. China Mechanical Engineering, 2013, 24(7): 899-905(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201307010.htm [12] SENOL Y E, AYDOGDU Y V, SAHIN B, et al. Fault tree analysis of chemical cargo contamination by using fuzzy approach[J]. Expert Systems with Applications, 2015, 42(12): 5232-5244. doi: 10.1016/j.eswa.2015.02.027 [13] LAVASANI S M, ZENDEGANI A, CELIK M. An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry[J]. Process Safety and Environmental Protection, 2015, 93: 75-88. doi: 10.1016/j.psep.2014.05.001 [14] 梁芬, 王振. 基于T-S模糊故障树的焊接机可靠性分析[J]. 机械强度, 2017, 39(3): 592-597. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201703016.htmLIANG F, WANG Z. The reliability analysis of turret system based on T-S fuzzy fault tree[J]. Journal of Mechanical Strength, 2017, 39(3): 592-597(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201703016.htm [15] 孙利娜, 黄宁, 仵伟强, 等. 基于T-S模糊故障树的多态系统性能可靠性[J]. 机械工程学报, 2016, 52(10): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201610025.htmSUN L N, HUANG N, WU W Q, et al. Performance reliability of polymorphic systems by fuzzy fault tree based on T-S model[J]. Journal of Mechanical Engineering, 2016, 52(10): 191-198(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201610025.htm [16] GE D C, LIN M, YANG Y H, et al. Quantitative analysis of dynamic fault trees using improved sequential binary decision diagrams[J]. Reliability Engineering and System Safety, 2015, 142(10): 289-299.