留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CGAPIO的航天器编队重构路径规划方法

华冰 孙胜刚 吴云华 陈志明

华冰, 孙胜刚, 吴云华, 等 . 基于CGAPIO的航天器编队重构路径规划方法[J]. 北京航空航天大学学报, 2021, 47(2): 223-230. doi: 10.13700/j.bh.1001-5965.2020.0277
引用本文: 华冰, 孙胜刚, 吴云华, 等 . 基于CGAPIO的航天器编队重构路径规划方法[J]. 北京航空航天大学学报, 2021, 47(2): 223-230. doi: 10.13700/j.bh.1001-5965.2020.0277
HUA Bing, SUN Shenggang, WU Yunhua, et al. Path planning method for spacecraft formation reconfiguration based on CGAPIO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 223-230. doi: 10.13700/j.bh.1001-5965.2020.0277(in Chinese)
Citation: HUA Bing, SUN Shenggang, WU Yunhua, et al. Path planning method for spacecraft formation reconfiguration based on CGAPIO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 223-230. doi: 10.13700/j.bh.1001-5965.2020.0277(in Chinese)

基于CGAPIO的航天器编队重构路径规划方法

doi: 10.13700/j.bh.1001-5965.2020.0277
基金项目: 

国家自然科学基金 61973513

国家自然科学基金 61673208

详细信息
    作者简介:

    华冰  女, 博士, 副研究员, 硕士生导师。主要研究方向: 导航制导与控制

    孙胜刚  男, 硕士研究生。主要研究方向: 航天器智能编队技术

    通讯作者:

    华冰. E-mail: huabing@nuaa.edu.cn

  • 中图分类号: TP242.6

Path planning method for spacecraft formation reconfiguration based on CGAPIO

Funds: 

National Natural Science Foundation of China 61973513

National Natural Science Foundation of China 61673208

More Information
  • 摘要:

    针对航天器编队重构的路径规划问题,考虑燃料消耗和碰撞概率等约束条件,以及基本鸽群算法存在的问题,提出一种基于混沌初始化和高斯扰动的自适应鸽群(CGAPIO)算法。为了得到多样性和覆盖性更好的鸽群初始值,采用Tent Map混沌模型进行鸽群初始化操作;在地图和指南针算子阶段,为提高全局搜索能力,引入了自适应的权重因子和学习因子更新个体的位置和速度;在地标算子阶段,为避免算法陷入局部最优,将高斯扰动加入到鸽群中心位置。仿真实验结果表明:CGAPIO算法与基本鸽群算法和粒子群算法相比,提高了全局搜索能力,避免了局部最优,规划得到的路径更加平滑,各航天器碰撞概率较低,编队重构消耗的总燃料至少减少了12%。

     

  • 图 1  编队飞行相对参考坐标系

    Figure 1.  Relative frame of reference for formation flight

    图 2  不同初始值下的Tent Map混沌模型结果

    Figure 2.  Results of Tent Map chaotic model with different initial values

    图 3  随机数与Tent Map混沌模型初始化结果对比

    Figure 3.  Comparison of initialization results between random numbers and Tent Map chaotic model

    图 4  自适应权重因子和学习因子随迭代次数的变化

    Figure 4.  Changes of adaptive weighting factor and learning factor with number of iterations

    图 5  高斯扰动示意图

    Figure 5.  Schematic diagram of Gaussian disturbance

    图 6  CGAPIO算法流程

    Figure 6.  Flowchart of CGAPIO

    图 7  CGAPIO算法路径规划结果

    Figure 7.  Path planning results of CGAPIO

    图 8  PIO算法路径规划结果

    Figure 8.  Path planning results of PIO

    图 9  PSO算法路径规划结果

    Figure 9.  Path planning results of PSO

    图 10  不同算法适应度对比

    Figure 10.  Comparison of fitness curves among different algorithms

    表  1  航天器初始位置与目标位置

    Table  1.   Initial and target positions of spacecraft

    航天器编号 初始位置/km 目标位置/km
    1 (1.732,2,0.034 64) (0,1,0)
    2 (0,4,0) (0,-2,0)
    3 (-1.732,-2,0.034 64) (0,-1,0)
    4 (0,-4,0) (0,2,0)
    下载: 导出CSV

    表  2  不同算法总燃料消耗对比

    Table  2.   Comparison of total fuel consumption among different algorithms

    算法 燃料消耗/(km·s-1) 总燃料消耗/(km·s-1)
    航天器1 航天器2 航天器3 航天器4
    CGAPIO 0.006 65 0.012 40 0.012 29 0.006 72 0.038 06
    PIO 0.007 52 0.015 53 0.015 36 0.007 08 0.045 49
    PSO 0.007 04 0.018 16 0.017 19 0.007 14 0.049 53
    下载: 导出CSV
  • [1] 李亮, 王洪, 刘良玉, 等. 微小卫星星座与编队技术发展[J]. 空间电子技术, 2017, 14(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ201701001.htm

    LI L, WANG H, LIU L Y, et al. Microsatellite constellation and formation technology development[J]. Space Electronic Technology, 2017, 14(1): 1-3(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ201701001.htm
    [2] MAC T T, COPOT C, TRAN D T, et al. Heuristic approaches in robot path planning: A survey[J]. Robotics and Autonomous Systems, 2016, 86: 13-28. doi: 10.1016/j.robot.2016.08.001
    [3] GARCIA M A P, MONTIEL O, CASTILLO O, et al. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[J]. Applied Soft Computing, 2009, 9(3): 1102-1110. doi: 10.1016/j.asoc.2009.02.014
    [4] DUAN H B, QIAO P X. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37. doi: 10.1108/IJICC-02-2014-0005
    [5] 林娜, 黄思铭, 拱长青. 基于自适应权重鸽群算法的无人机航路规划[J]. 计算机仿真, 2018, 35(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201801009.htm

    LIN N, HUANG S M, GONG C Q. UAV route planning based on adaptive weighted pigeon colony algorithm[J]. Computer Integrated Manufacturing Systems, 2018, 35(1): 38-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201801009.htm
    [6] 胡耀龙, 冯强, 海星朔, 等. 基于自适应学习策略的改进鸽群优化算法[J/OL]. 北京航空航天大学学报, 2020(2020-02-26)[2020-06-17]. https://doi.org/10.13700/j.bh.1001-5965.2019.0603.

    HU Y L, FENG Q, HAI X S, et al.Improved pigeon group optimization algorithm based on adaptive learning strategy[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2020(2020-02-26)[2020-06-17]. https://doi.org/10.13700/j.bh.1001-5965.2019.0603 (in Chinese).
    [7] 崔文豪. J2摄动下的卫星编队队形重构与队形保持方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 94-95.

    CUI W H.Research on satellite formation reconstruction and formation maintenance method under J2 disturbance[D]. Harbin: Harbin Engineering University, 2019: 94-95(in Chinese).
    [8] ZHANG S J, DUAN H B. Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration[J]. Chinese Journal of Aeronautics, 2015, 28(1): 200-205. doi: 10.1016/j.cja.2014.12.008
    [9] CLOHESSY W H, WILTSHIRE R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Science, 1960, 27(5): 653-658. doi: 10.2514/8.8704
    [10] 连淑君, 唐加会, 杜爱华. 带等式约束的光滑优化问题的一类新的精确罚函数[J]. 运筹学学报, 2018, 22(4): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YCXX201804010.htm

    LIAN S J, TANG J H, DU A H. A new class of exact penalty functions for smooth optimization problems with equality constraints[J]. Operations Research Transactions, 2018, 22(4): 108-116(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YCXX201804010.htm
    [11] 崔承刚, 杨晓飞. 基于内部罚函数的进化算法求解约束优化问题[J]. 软件学报, 2015, 26(7): 1688-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201507011.htm

    CUI C G, YANG X F. Evolutionary algorithm based on internal penalty function for constrained optimization problems[J]. Journal of Software, 2015, 26(7): 1688-1699(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201507011.htm
    [12] ANTCZAK T. A lower bound for the penalty parameter in the exact minimax penalty function method for solving nondifferentiable extremum problems[J]. Journal of Optimization Theory and Applications, 2013, 159(2): 437-453. doi: 10.1007/s10957-013-0335-3
    [13] HUA B, HUANG Y, WU Y H, et al. Spacecraft formation reconfiguration trajectory planning with avoidance constraints using adaptive pigeon-inspired optimization[J]. Science China Information Sciences, 2019, 62(70209): 1-3.
    [14] 聂瑞, 章卫国, 李广文, 等. 基于Tent映射的自适应混沌混合多目标遗传算法[J]. 北京航空航天大学学报, 2012, 38(8): 1010-1016. https://bhxb.buaa.edu.cn/CN/Y2012/V38/I8/1010

    NIE R, ZHANG W G, LI G W, et al. Adaptive chaotic hybrid multi-objective genetic algorithm based on Tent mapping[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(8): 1010-1016(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V38/I8/1010
    [15] TAVAZOEI M S, HAERI M. Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms[J]. Applied Mathematics and Computation, 2007, 187(2): 1076-1085. doi: 10.1016/j.amc.2006.09.087
    [16] 段海滨, 叶飞. 鸽群优化算法研究进展[J]. 北京工业大学学报, 2017, 43(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201701004.htm

    DUAN H B, YE F. Research progress of pigeon colony optimization algorithm[J]. Journal of Beijing University of Technology, 2017, 43(1): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201701004.htm
    [17] 周雨鹏. 基于鸽群算法的函数优化问题求解[D]. 长春: 东北师范大学, 2016: 6-8.

    ZHOU Y P.Function optimization problem based on pigeon colony algorithm[D]. Changchun: Northeast Normal University, 2016: 6-8(in Chinese).
    [18] 陶国娇, 李智. 带认知因子的交叉鸽群算法[J]. 四川大学学报(自然科学版), 2018, 55(2): 295-300. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201802014.htm

    TAO G J, LI Z. Cross-pigeon algorithm with cognitive factors[J]. Journal of Sichuan University(Natural Science Edition), 2018, 55(2): 295-300(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201802014.htm
    [19] 王日宏, 李祥, 李娜. 基于高斯扰动和混沌初始化的狼群算法[J]. 计算机工程与设计, 2019, 40(10): 2879-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201910024.htm

    WANG R H, LI X, LI N. Wolf pack algorithm based on Gaussian perturbation and chaos initialization[J]. Computer Engineering and Design, 2019, 40(10): 2879-2884(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201910024.htm
    [20] 王瑞, 肖冰松. 基于改进鸽群优化和马尔可夫链的多无人机协同搜索方法[J]. 工程科学学报, 2019, 41(10): 1342-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201910014.htm

    WANG R, XIAO B S. A cooperative search method for multiple UAVs based on improved pigeon optimization and Markov chains[J]. Journal of Engineering Sciences, 2019, 41(10): 1342-1350(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201910014.htm
    [21] 艾兵, 董明刚. 基于高斯扰动和自然选择的改进粒子群优化算法[J]. 计算机应用, 2016, 36(3): 687-691. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201603021.htm

    AI B, DONG M G. Improved particle swarm optimization algorithm based on Gaussian disturbance and natural selection[J]. Journal of Computer Applications, 2016, 36(3): 687-691(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201603021.htm
    [22] 朱德刚, 孙辉, 赵嘉, 等. 基于高斯扰动的粒子群优化算法[J]. 计算机应用, 2014, 34(3): 754-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201403032.htm

    ZHU D G, SUN H, ZHAO J, et al. Particle swarm optimization algorithm based on Gaussian perturbation[J]. Journal of Computer Applications, 2014, 34(3): 754-759(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201403032.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  168
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-17
  • 录用日期:  2020-07-17
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答