-
摘要:
针对雷达探鸟中的飞鸟目标数量统计问题,提出了一种多目标航迹自动起始跟踪算法,实现了对机场周边鸟类活动热点区域内鸟类目标数量的统计分析。通过数据关联估计量测与所有可能事件的关联概率,包括目标的新生、延续和消亡,以及杂波的剔除,并通过卡尔曼滤波与平滑方法给出每个目标的平滑轨迹,实现了对目标的全生命周期管理。仿真结果表明:所提算法能很好地实现杂波环境中的多目标航迹自动起始跟踪,正确估计每个目标的起始和消亡时间,统计目标数量的变化情况,且在目标起始的及时性方面明显优于传统的逻辑法。将所提算法应用于机场探鸟雷达实测数据,估计机场周边鸟类数量,可指导机场开展有针对性的鸟击防范工作。
Abstract:A multi-target automatic initiation and tracking algorithm suitable for avian radar data is proposed to realize the statistical analysis of the number of bird targets in the hot spots of bird activities around the airport. The algorithm estimates the probability of association between the measurement and all possible events by data association, including the birth, continuation and extinction of the target, as well as the elimination of clutter. The smooth trajectory of each target is estimated by the Kalman filter and smoothing method, and the whole life cycle management of the target is realized. The simulation results show that the algorithm can realize multi-target automatic initiation and tracking in clutter environment, estimate the start and end time of each target correctly, and count the change of the number of targets, and it is obviously better than the traditional logic method in the timeliness of target initiation. Finally, the algorithm is applied to the airport avian radar data to estimate the number of birds around the airport, leading the airport to carry out targeted bird strike prevention measures.
-
表 1 目标航迹起始延迟周期平均值对比
Table 1. Comparison of delay periods of target path initiation
λ 延迟周期平均值 本文算法 逻辑法(3周期) 0.1 0.004 4 0.5 0.037 1 1.0 0.248 5 3 1.5 0.802 6 2.0 1.858 3 表 2 鸟类目标数量估计结果
Table 2. Estimation results of bird target number
序号 鸟类目标数量/只 雷达数据 人工观测 1 23 22 2 22 22 3 22 20 4 24 24 5 26 27 6 25 26 7 25 22 8 27 27 9 23 24 10 25 22 -
[1] WHITE J R. Advisory circular: Reporting wildlife aircraft strikes: 150/5200-32B[R]. Washington, D.C. : FAA, 2013. [2] 宁焕生, 刘文明, 李敬, 等. 航空鸟击雷达鸟情探测研究[J]. 电子学报, 2006, 34(12): 2232-2237. doi: 10.3321/j.issn:0372-2112.2006.12.023NING H S, LIU W M, LI J, et al. Research on radar avian detection for aviation[J]. Acta Electronica Sinica, 2006, 34(12): 2232-2237(in Chinese). doi: 10.3321/j.issn:0372-2112.2006.12.023 [3] NOHARA T J. Could avian radar have prevented US airways flight 1549's bird strike [C]//2009 Bird Strike North America Conference, 2009: 1-6. [4] 中华人民共和国交通运输部. 运输机场运行安全管理规定: CCAR-140-R1[S]. 北京: 中华人民共和国交通运输部, 2019.Ministry of Transport of the People's Republic of China. Regulations on operation safety management of transport airport: CCAR-140-R1[S]. Beijing: Ministry of Transport of the People's Republic of China, 2019(in Chinese). [5] BEASON R C, NOHARA T J, WEBER P. Beware the boojum: Caveats and strengths of avian radar[J]. Human-Wildlife Interactions, 2013, 7(1): 16-46. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1121&context=hwi [6] 陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201702002.htmCHEN W S, LI J. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2): 7-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201702002.htm [7] 中国民用航空局机场司. 民用机场鸟情生态环境调研指南: AC-140-CA-2009-2[S]. 北京: 中国民用航空局机场司, 2009.Airport Bureau of CAAC. Guide for investigation of bird situation and ecological environment of civil airports: AC-140-CA-2009-2[S]. Beijing: Airport Bureau of CAAC, 2009(in Chinese). [8] 陈唯实, 张洁, 卢贤锋. 基于探鸟雷达数据的机场鸟情分析[J]. 中国民用航空, 2020(1): 43-45.CHEN W S, ZHANG J, LU X F. Airport bird situation analysis based on avian radar data[J]. China Civil Aviation, 2020(1): 43-45(in Chinese). [9] 何友, 修建娟, 张晶炜. 雷达数据处理及应用[M]. 2版. 北京: 电子工业出版社, 2009.HE Y, XIU J J, ZHANG J W. Radar data processing with applications[M]. 2nd ed. Beijing: Publishing House of Electronics industry, 2009(in Chinese). [10] GRANSTROM K, BAUM M, REUTER S. Extended object tracking: Introduction, overview and applications[J]. Journal of Advances in Information Fusion, 2017, 12(2): 139-174. http://lanl.arxiv.org/abs/1604.00970 [11] HU Z J, LEUNG H, BLANCHETTE M. Statistical performance analysis of track initiation techniques[J]. IEEE Transactions on Signal Processing, 1997, 45(2): 445-456. doi: 10.1109/78.554308 [12] 王国宏, 苏峰, 何友. 三维空间中基于Hough变换和逻辑的航迹起始[J]. 系统仿真学报, 2004, 16(10): 2198-2200. doi: 10.3969/j.issn.1004-731X.2004.10.021WANG G H, SU F, HE Y. Hough transform (HT) and logic based track initiator in three dimensional space[J]. Journal of System Simulation, 2004, 16(10): 2198-2200(in Chinese). doi: 10.3969/j.issn.1004-731X.2004.10.021 [13] CARLSON B D, EVANS E D, WILSON S L, et al. Search radar detection and track with the Hough transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102-108. doi: 10.1109/7.250410 [14] LI L, WANG G, ZHANG X, et al. The track initiation algorithm based on Hough transform and space accumulation[C]//2016 IEEE 13th International Conference on Signal Processing. Piscataway: IEEE Press, 2016: 1466-1470. [15] 史建涛, 孙俊, 杨予昊, 等. 基于机器学习支持向量机的海面目标航迹起始算法研究及应用[J]. 现代雷达, 2019, 41(11): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201911005.htmSHI J T, SUN J, YANG Y H, et al. A study and application of track initiation of sea surface targets based on machine learning support vector machine[J]. Modern Radar, 2019, 41(11): 20-24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201911005.htm [16] 杨翠芳, 刘硕, 李宏博, 等. 一种基于随机森林的航迹起始算法[J]. 信息化研究, 2018, 44(6): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS201806004.htmYANG C F, LIU S, LI H B, et al. A new track initiation algorithm based on random forest[J]. Informatization Research, 2018, 44(6): 16-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS201806004.htm [17] JOUNNY I, GARBAR F D, AHALT S C. Classification of radar target using synthetic neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 336-343. doi: 10.1109/7.210072