留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

优化Landweber迭代快速电磁层析成像图像重建算法

霍继伟 刘泽 王亚东 袁伟 王成飞

霍继伟, 刘泽, 王亚东, 等 . 优化Landweber迭代快速电磁层析成像图像重建算法[J]. 北京航空航天大学学报, 2021, 47(8): 1571-1579. doi: 10.13700/j.bh.1001-5965.2020.0284
引用本文: 霍继伟, 刘泽, 王亚东, 等 . 优化Landweber迭代快速电磁层析成像图像重建算法[J]. 北京航空航天大学学报, 2021, 47(8): 1571-1579. doi: 10.13700/j.bh.1001-5965.2020.0284
HUO Jiwei, LIU Ze, WANG Yadong, et al. Optimized Landweber iterative fast image reconstruction algorithm for electromagnetic tomography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1571-1579. doi: 10.13700/j.bh.1001-5965.2020.0284(in Chinese)
Citation: HUO Jiwei, LIU Ze, WANG Yadong, et al. Optimized Landweber iterative fast image reconstruction algorithm for electromagnetic tomography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1571-1579. doi: 10.13700/j.bh.1001-5965.2020.0284(in Chinese)

优化Landweber迭代快速电磁层析成像图像重建算法

doi: 10.13700/j.bh.1001-5965.2020.0284
基金项目: 

国家自然科学基金 61771041

北京市自然科学基金 4192045

详细信息
    通讯作者:

    刘泽, E-mail: zliu@bjtu.edu.cn

  • 中图分类号: TP23;TP212

Optimized Landweber iterative fast image reconstruction algorithm for electromagnetic tomography

Funds: 

National Natural Science Foundation of China 61771041

Beijing Municipal Natural Science Foundation 4192045

More Information
  • 摘要:

    电磁层析成像(EMT)中灵敏度矩阵的病态性、不适定性导致重建图像质量较差。为了提高重建图像的质量与速度,提出了一种优化Landweber迭代快速图像重建算法。首先,对灵敏度矩阵作降维映射,去除灵敏度矩阵中的冗余信息,减少每次迭代的计算量。然后,利用人群搜索算法(SOA)优化降维后的灵敏度矩阵,降低灵敏度矩阵的条件数,改善其病态程度。最后,通过Landweber迭代算法和预处理后的灵敏度矩阵进行图像重建。仿真实验结果表明:相同实验条件下,相比于Landweber迭代算法,所提算法有效提高了成像质量,降低了成像运算量。

     

  • 图 1  典型灵敏度矩阵分布

    Figure 1.  Typical sensitivity matrix distribution

    图 2  原始协方差矩阵特征值

    Figure 2.  Eigenvalues of original covariance matrix

    图 3  灵敏度矩阵条件数收敛曲线

    Figure 3.  Convergence curve of condition number of sensitivity matrix

    表  1  无噪声情况下图像重建结果

    Table  1.   Results of image reconstruction without noise

    表  2  无噪声情况下不同成像算法相关系数比较

    Table  2.   Comparison of correlation coefficients among different imaging algorithms without noise

    模型序号 相关系数
    LBP算法 Tikhonov算法 Landweber迭代算法 本文算法
    1 0.166 5 0.394 5 0.719 1 0.810 9
    2 0.066 1 0.354 5 0.732 8 0.868 9
    3 0.112 6 0.385 8 0.719 2 0.754 9
    4 0.114 7 0.354 4 0.690 2 0.720 1
    5 0.153 1 0.433 1 0.693 2 0.750 7
    6 0.075 7 0.146 3 0.435 6 0.794 8
    7 0.112 1 0.289 8 0.575 3 0.788 8
    8 0.148 2 0.178 1 0.568 1 0.701 8
    9 0.239 3 0.279 3 0.539 6 0.642 8
    10 0.378 2 0.569 7 0.687 1 0.730 7
    下载: 导出CSV

    表  3  无噪声情况下不同成像算法图像误差比较

    Table  3.   Comparison of image error among different imaging algorithms without noise

    模型序号 图像误差
    LBP算法 Tikhonov算法 Landweber迭代算法 本文算法
    1 1.200 2 1.025 6 0.718 6 0.652 2
    2 1.172 5 0.961 8 0.676 1 0.535 1
    3 1.195 8 1.034 2 0.792 3 0.756 4
    4 1.205 9 1.001 6 0.782 9 0.765 7
    5 1.340 6 1.157 3 0.949 7 0.792 5
    6 1.071 8 0.974 7 0.894 1 0.608 7
    7 1.399 6 0.901 1 0.872 4 0.858 9
    8 1.279 4 0.956 3 0.810 4 0.725 2
    9 1.589 4 0.907 4 0.850 9 0.862 4
    10 0.964 2 0.911 1 0.936 6 0.788 0
    下载: 导出CSV

    表  4  噪声情况下图像重建结果

    Table  4.   Results of image reconstruction with noise

    表  5  噪声情况下不同成像算法相关系数比较

    Table  5.   Comparison of correlation coefficients among different imaging algorithms with noise

    模型序号 相关系数
    LBP算法 Tikhonov算法 Landweber迭代算法 本文算法
    1 0.166 8 0.394 2 0.714 3 0.803 1
    2 0.066 4 0.351 5 0.728 1 0.862 5
    3 0.112 2 0.387 1 0.716 7 0.757 1
    4 0.114 1 0.354 7 0.687 2 0.757 1
    5 0.152 7 0.433 6 0.695 4 0.756 9
    6 0.017 8 0.154 91 0.451 3 0.689 2
    7 0.125 9 0.289 2 0.574 3 0.783 3
    8 0.141 9 0.176 1 0.565 4 0.691 3
    9 0.240 4 0.277 1 0.536 8 0.637 7
    10 0.378 0 0.571 3 0.685 1 0.729 4
    下载: 导出CSV

    表  6  噪声情况下不同成像算法图像误差比较

    Table  6.   Comparison of image error among different imaging algorithms with noise

    模型序号 图像误差
    LBP算法 Tikhonov算法 Landweber迭代算法 本文算法
    1 1.200 7 1.021 9 0.725 6 0.684 5
    2 1.180 3 0.961 9 0.680 8 0.543 2
    3 1.191 0 1.033 7 0.763 0 0.804 4
    4 1.208 4 0.999 2 0.784 8 0.749 5
    5 1.337 8 1.149 5 0.937 7 0.810 4
    6 1.006 8 0.974 1 0.886 6 0.712 0
    7 1.381 5 0.901 3 0.874 5 0.883 8
    8 1.265 1 0.956 8 0.816 5 0.739 9
    9 1.597 5 0.908 1 0.850 8 0.874 9
    10 0.963 7 0.909 6 0.941 2 0.782 7
    下载: 导出CSV

    表  7  两种成像算法运算量比较

    Table  7.   Comparison of calculation load between two imaging algorithms

    算法 加法运算量 减法运算量 乘法运算量
    本文算法 12 538 644 19 320
    Landweber迭代算法 17 682 644 27 048
    下载: 导出CSV
  • [1] 李峰, 谭超, 董峰. 全连接深度网络的电学层析成像算法[J]. 工程热物理学报, 2019, 40(7): 1526-1531. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201907012.htm

    LI F, TAN C, DONG F. Fully connected deep network algorithm for electrical tomography[J]. Journal of Engineering Thermophysics, 2019, 40(7): 1526-1531(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201907012.htm
    [2] 肖理庆, 王化祥. 基于聚类电阻层析成像静态图像重建算法[J]. 仪器仪表学报, 2016, 37(6): 1258-1266. doi: 10.3969/j.issn.0254-3087.2016.06.008

    XIAO L Q, WANG H X. Absolute image reconstruction algorithm based on clustering for ERT[J]. Chinese Journal of Scientific Instrument, 2016, 37(6): 1258-1266(in Chinese). doi: 10.3969/j.issn.0254-3087.2016.06.008
    [3] MA X, PEYTON A J, HIGSON S R, et al. Hardware and software design for an electromagnetic induction tomography (EMT) system for high contrast metal process applications[J]. Measurement Science and Technology, 2006, 17(1): 111-118. doi: 10.1088/0957-0233/17/1/018
    [4] WATSON S, WILLIAMS R J, GOUGH W, et al. A magnetic induction tomography system for samples with conductivities below 10 S·m-1[J]. Measurement Science and Technology, 2008, 19(4): 045501. doi: 10.1088/0957-0233/19/4/045501
    [5] HUANG A, CAO Z, SUN S, et al. An agile electrical capacitance tomography system with improved frame rates[J]. IEEE Sensors Journal, 2019, 19(4): 1416-1425. doi: 10.1109/JSEN.2018.2880999
    [6] SUN S, CAO Z, HUANG A, et al. A high-speed digital electrical capacitance tomography system combining digital recursive demodulation and parallel capacitance measurement[J]. IEEE Sensors Journal, 2017, 17(20): 6690-6698. doi: 10.1109/JSEN.2017.2750741
    [7] BROWN B H. Medical impedance tomography and process impedance tomography: A brief review[J]. Measurement Science and Technology, 2008, 19(9): 1-9. http://www.ingentaconnect.com/content/iop/mst/2001/00000012/00000008/art00301
    [8] 范文茹, 王勃, 李靓瑶, 等. 基于电阻抗层析成像的CFRP结构损伤检测[J]. 北京航空航天大学学报, 2019, 45(11): 2177-2183. doi: 10.13700/j.bh.1001-5965.2019.0149

    FAN W R, WANG B, LI J Y, et al. Damage detection of CFRP structure based on electrical impedance tomography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2177-2183(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0149
    [9] 曾星星, 何敏, 张健, 等. EMT用于金属结构裂纹图像重建的仿真研究[J]. 电子测量与仪器学报, 2020, 34(1): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202001026.htm

    ZENG X X, HE M, ZHANG J, et al. Simulation study on EMT image reconstruction of metal structure flaw[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(1): 186-192(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202001026.htm
    [10] LIU Z, LI W, XUE F, et al. Electromagnetic tomography rail defect inspection[J]. IEEE Transactions on Magnetics, 2015, 51(10): 1-7. http://ieeexplore.ieee.org/document/7102708
    [11] 何敏, 柴孟阳. 三种电磁无损检测方法综述[J]. 测控技术, 2012, 31(3): 1-4. doi: 10.3969/j.issn.1000-8829.2012.03.001

    HE M, CHAI M Y. Summary of three electromagnetic nondestructive testing methods[J]. Measurement & Control Technology, 2012, 31(3): 1-4(in Chinese). doi: 10.3969/j.issn.1000-8829.2012.03.001
    [12] 何敏, 刘泽, 董峰, 等. 电磁层析成像技术图像重建的仿真研究[J]. 天津大学学报(自然科学与工程技术版), 2001, 34(4): 435-438. doi: 10.3969/j.issn.0493-2137.2001.04.005

    HE M, LIU Z, DONG F, et al. Simulation study on image reconstruction of electromagnetic tomography[J]. Journal of Tianjin University (Science and Technology), 2001, 34(4): 435-438(in Chinese). doi: 10.3969/j.issn.0493-2137.2001.04.005
    [13] YANG W Q, SPINK D M, YORK T A, et al. An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography[J]. Measurement Science and Technology, 1999, 10(11): 1065-1069. doi: 10.1088/0957-0233/10/11/315
    [14] 彭黎辉, 陆耿, 杨五强. 电容成像图像重建算法原理及评价[J]. 清华大学学报(自然科学版), 2004, 44(4): 478-484. doi: 10.3321/j.issn:1000-0054.2004.04.013

    PENG L H, LU G, YANG W Q. Image reconstruction algorithms for electrical capacitance tomography: State of the art[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(4): 478-484(in Chinese). doi: 10.3321/j.issn:1000-0054.2004.04.013
    [15] 何元胜, 何敏, 李杰仁. 电磁层析成像图像重建算法[J]. 电气技术, 2007(4): 43-48. doi: 10.3969/j.issn.1673-3800.2007.04.011

    HE Y S, HE M, LI J R. Review about image reconstruction arithmetic for electromagnetic tomography[J]. Electrical Engineering, 2007(4): 43-48(in Chinese). doi: 10.3969/j.issn.1673-3800.2007.04.011
    [16] ROSELL J, CASAÑAS R, SCHARFETTER H. Sensitivity maps and system requirements for magnetic induction tomography using a planar gradiometer[J]. Physiological Measurement, 2001, 22(1): 121-130. doi: 10.1088/0967-3334/22/1/316
    [17] 徐凯, 陈广, 尹武良, 等. 基于场量提取法的电磁层析成像系统的灵敏度推算[J]. 传感技术学报, 2011, 24(4): 543-547. doi: 10.3969/j.issn.1004-1699.2011.04.015

    XU K, CHEN G, YIN W L, et al. Sensitivity derivation and calculation of electromagnetic tomography (EMT) sensor based on field value extraction[J]. Chinese Journal of Sensors and Actuators, 2011, 24(4): 543-547(in Chinese). doi: 10.3969/j.issn.1004-1699.2011.04.015
    [18] 刘泽, 肖君, 刘向龙, 等. 一种电磁层析图像快速重建算法[J]. 北京航空航天大学学报, 2018, 44(8): 1569-1576. doi: 10.13700/j.bh.1001-5965.2017.0651

    LIU Z, XIAO J, LIU X L, et al. An algorithm for fast reconstruction of electromagnetic tomography images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1569-1576(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0651
    [19] 张连强, 王东风. 基于改进人群搜索算法的PID参数优化[J]. 计算机工程与设计, 2016, 37(12): 3389-3393. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201612047.htm

    ZHANG L Q, WANG D F. Optimization of PID parameters based on improved seeker optimization[J]. Computer Engineering and Design, 2016, 37(12): 3389-3393(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201612047.htm
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  151
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-20
  • 录用日期:  2020-08-14
  • 网络出版日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答