留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复杂网络的车载自组织网络脆弱性分析

张宏 吕悦晶

张宏, 吕悦晶. 基于复杂网络的车载自组织网络脆弱性分析[J]. 北京航空航天大学学报, 2021, 47(8): 1543-1549. doi: 10.13700/j.bh.1001-5965.2020.0292
引用本文: 张宏, 吕悦晶. 基于复杂网络的车载自组织网络脆弱性分析[J]. 北京航空航天大学学报, 2021, 47(8): 1543-1549. doi: 10.13700/j.bh.1001-5965.2020.0292
ZHANG Hong, LYU Yuejing. Vulnerability of vehicular ad hoc network based on complex network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1543-1549. doi: 10.13700/j.bh.1001-5965.2020.0292(in Chinese)
Citation: ZHANG Hong, LYU Yuejing. Vulnerability of vehicular ad hoc network based on complex network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1543-1549. doi: 10.13700/j.bh.1001-5965.2020.0292(in Chinese)

基于复杂网络的车载自组织网络脆弱性分析

doi: 10.13700/j.bh.1001-5965.2020.0292
基金项目: 

内蒙古自治区自然科学基金 2019MS07021

详细信息
    通讯作者:

    张宏, E-mail: zh-hong@imu.edu.cn

  • 中图分类号: U491.2;TP393.1

Vulnerability of vehicular ad hoc network based on complex network

Funds: 

Natural Science Foundation of Inner Mongolia Autonomous Region of China 2019MS07021

More Information
  • 摘要:

    车载自组织网络(VANET)作为智能交通的重要基础应用,其安全稳定地运行是交通系统乃至社会经济可持续发展的需要。以最大连通度、连通分支平均规模、全局网络效率等参数为脆弱性测度指标,基于复杂网络理论,应用车辆仿真软件(VanetMobiSim)建立了VANET网络拓扑模型,详细研究了在随机攻击和蓄意攻击模式下脆弱性量化指标随节点移除比例的变化关系;通过仿真实验分析了节点密度、信号辐射半径及不同攻击策略对VANET脆弱性的影响。仿真结果表明:VANET在蓄意攻击下比较脆弱,基于节点介数的蓄意攻击效能最强;节点密度、信号辐射半径越小,VANET连通性越差,网络越脆弱。所提方法和结果为VANET拓扑控制优化和网络管理决策提供了理论依据。

     

  • 图 1  RA、RK、RB攻击模式下VANET最大连通度

    Figure 1.  The largest connected degree of VANET in RA, RK and RB attack modes

    图 2  RA、RK、RB攻击模式下VANET连通分支平均规模

    Figure 2.  Average size of connected components of VANET in RA, RK and RB attack modes

    图 3  RA、RK、RB攻击模式下信号辐射半径对VANET全局网络效率的影响

    Figure 3.  Influence of signal radiation radius on global network efficiency of VANET in RA, RK and RB attack modes

    图 4  RA、RK、RB攻击模式下节点密度对VANET最大连通度的影响

    Figure 4.  Influence of node density on the largest connected degree of VANET in RA, RK and RB attack modes

    图 5  RA、RK、RB攻击模式下节点密度对VANET连通分支平均规模的影响

    Figure 5.  Influence of node density on average size of connected components of VANET in RA, RK and RB attack modes

    图 6  RA、RK、RB攻击模式下节点密度对VANET全局网络效率的影响

    Figure 6.  Influence of node density on global network efficiency of VANET in RA, RK and RB attack modes

    表  1  模型仿真参数

    Table  1.   Simulation parameters of model

    参数 数值
    信号辐射半径r/m 100, 200, 300
    仿真区域面积/(m×m) 2 000×2 000
    节点数目N 100, 200, 300
    车道数 双向四车道
    仿真时间/s 300
    节点速度/(m·s-1) 5~20
    下载: 导出CSV
  • [1] RASHEED A, GILLANI S, AJMAL S, et al. Vehicular Ad Hoc network (VANET): A survey, challenges, and applications[M]//LAOUITI A, QAYYUM A, SAAD M N M. Vehicular Ad-Hoc Networks for Smart Cities. Berlin: Springer, 2017: 39-51.
    [2] ZHANG H, LI J. Modeling and dynamical topology properties of VANET based on complex networks theory[J]. AIP Advances, 2015, 5(1): 017150. doi: 10.1063/1.4907245
    [3] 张宏, 李杰. 车载自组织网络拓扑特性及控制[J]. 交通运输系统工程与信息, 2015, 15(2): 81-87. doi: 10.3969/j.issn.1009-6744.2015.02.013

    ZHANG H, LI J. Topological characteristics and control approach for VANET[J]. Transportation Systems Engineering and Information, 2015, 15(2): 81-87(in Chinese). doi: 10.3969/j.issn.1009-6744.2015.02.013
    [4] ZHANG H, YAO Y G. An integrative vulnerability evaluation model to urban road complex network[J]. Wireless Personal Communications, 2019, 107(1): 193-204. doi: 10.1007/s11277-019-06248-7
    [5] ELSADING M A, FADLALLA Y A. VANETs security issues and challenges: A survey[J]. Indian Journal of Science and Technology, 2016, 9(28): 1-8.
    [6] 张宏, 吕悦晶. 车载自组织网络信息流量特性分析[J]. 工程数学学报, 2017, 34(5): 449-457. doi: 10.3969/j.issn.1005-3085.2017.05.001

    ZHANG H, LV Y J. Information flow characteristics analysis of vehicular ad-hoc network[J]. Chinese Journal of Engineering Mathematics, 2017, 34(5): 449-457(in Chinese). doi: 10.3969/j.issn.1005-3085.2017.05.001
    [7] TYAGI R, SHARMA N K, MALHOTRA K, et al. Comprehensive methodology for threat identification and vulnerability assessment in Ad Hoc networks[M]//BOKHARI M U, AGRAWAL N, SAINI D. Cyber security. Berlin: Springer, 2018: 335-347.
    [8] 冯慧芳, 李彩虹. 基于复杂网络的车载自组织网络抗毁性分析[J]. 计算机应用, 2016, 36(7): 1789-1792.

    FENG H F, LI C H. Invulnerability analysis of vehicular Ad Hoc network based on complex network[J]. Journal of Computer Applications, 2016, 36(7): 1789-1792(in Chinese).
    [9] FENG H F, LI C H, XU Y J. Invulnerability analysis of vehicular ad hoc networks based on temporal networks[C]//2016 2nd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2016: 16867374.
    [10] SARIKA S, PRANVIN A, VIJAYAKUMAR A, et al. Security issues in mobile ad hoc networks[J]. Procedia Computer Science, 2016, 16(1): 217-222.
    [11] FU X W, YANG Y S, POSTOLACHE O. Invulnerability of clustering wireless sensor networks against cascading failures[J]. IEEE Systems Journal, 2019, 13(2): 1431-1442. doi: 10.1109/JSYST.2018.2849779
    [12] KHAN Z, FAN P, FANG S. On the connectivity of vehicular ad hoc network under various mobility scenarios[J]. IEEE Access, 2017, 5: 22559-22565. doi: 10.1109/ACCESS.2017.2761551
    [13] NAGHSHIN V. Modeling and analysis of wireless communications networks: Multi-tier cellular and ad hoc networks[D]. Canberra: University of New South Wales, 2017.
    [14] COOPER C, FRANKLIN D, ROS M, et al. A comparative survey of VANET clustering techniques[J]. IEEE Communications Surveys and Tutorials, 2016, 19(1): 657-681. http://smartsearch.nstl.gov.cn/paper_detail.html?id=89a8f2b7f79dad4da7925460c5a30091
    [15] ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794): 378-382. doi: 10.1038/35019019
    [16] 冯慧芳, 李彩虹, 王瑞. 河谷型城市公交网络脆弱性研究: 以兰州市为例[J]. 交通运输系统工程与信息, 2016, 16(1): 217-222. doi: 10.3969/j.issn.1009-6744.2016.01.034

    FENG H F, LI C H, WANG R. Vulnerability study for public transport network of valley city: Case of Lanzhou[J]. Transportation Systems Engineering and Information, 2016, 16(1): 217-222(in Chinese). doi: 10.3969/j.issn.1009-6744.2016.01.034
    [17] 朱云峰, 王艳军, 朱陈平. 不同攻击模式下中国航路网络抗毁性研究[J]. 南京工程学院学报(自然科学版), 2018, 16(2): 51-56.

    ZHU Y F, WANG Y J, ZHU C P. Research on the invulnerability of China's air route network under different attack strategies[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2018, 16(2): 51-56(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 城市综合交通体系规划标准: GB/T 51328-2018[S]. 北京: 中国建筑工业出版社, 2018.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for urban comprehensive transport system planning: GB/T 51328-2018[S]. Beijing: China Architecture & Building Press, 2018(in Chinese).
    [19] HARRI J, FIORE M, FETHI F, et al. VanetMobiSim project[EB/OL]. (2016-09-21)[2019-03-01]. http://vanet.eurecom.fr.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  2
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 录用日期:  2020-09-04
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答