留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对地指向偏差为约束的卫星平稳对日定向方法

季浩然 黄頔

季浩然, 黄頔. 对地指向偏差为约束的卫星平稳对日定向方法[J]. 北京航空航天大学学报, 2021, 47(2): 351-358. doi: 10.13700/j.bh.1001-5965.2020.0293
引用本文: 季浩然, 黄頔. 对地指向偏差为约束的卫星平稳对日定向方法[J]. 北京航空航天大学学报, 2021, 47(2): 351-358. doi: 10.13700/j.bh.1001-5965.2020.0293
JI Haoran, HUANG Di. A smooth Sun-pointing guidance method for satellites constrained by deviation of Earth-pointing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 351-358. doi: 10.13700/j.bh.1001-5965.2020.0293(in Chinese)
Citation: JI Haoran, HUANG Di. A smooth Sun-pointing guidance method for satellites constrained by deviation of Earth-pointing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 351-358. doi: 10.13700/j.bh.1001-5965.2020.0293(in Chinese)

对地指向偏差为约束的卫星平稳对日定向方法

doi: 10.13700/j.bh.1001-5965.2020.0293
基金项目: 

国家自然科学基金 61903278

湖北省自然科学基金 2018CFB180

中央高校基本科研业务费专项资金 2042019kf0044

测绘遥感信息工程国家重点实验室专项科研经费 

详细信息
    作者简介:

    季浩然  男, 博士研究生。主要研究方向: 航天器结构、姿态、轨道动力学与控制

    黄頔  男, 博士, 副研究员。主要研究方向: 航天器导航制导控制

    通讯作者:

    黄頔. E-mail: dhuang@whu.edu.cn

  • 中图分类号: V448.21;V412.4+2

A smooth Sun-pointing guidance method for satellites constrained by deviation of Earth-pointing

Funds: 

National Natural Science Foundation of China 61903278

Hubei Provincial Natural Science Foundation of China 2018CFB180

the Fundamental Research Funds for the Central Universities 2042019kf0044

LIESMARS Special Research Funding 

More Information
  • 摘要:

    传统以对地指向偏差为约束的对日定向方法在星-日、星-地连线的夹角达到极值后,卫星期望姿态会发生大幅度快速翻转,导致较大的峰值功耗和寿命损伤。针对该现象,提出了一种可使期望姿态平稳变化的以对地指向偏差为约束的对日定向方法,将卫星的期望姿态设置为绕一基准姿态周期性地旋转。在不显著牺牲对日定向效能的同时,既确保卫星期望对地轴与对地方向的夹角小于约束角,又使得卫星姿态总体平稳变化。数值仿真表明:所提出的平稳对日定向方法能够大幅降低卫星期望角速度的峰值,同时能够满足对日指向和对地指向的需求。

     

  • 图 1  对日定向期望姿态建立步骤

    Figure 1.  Process of establishing expected Sun-pointing attitude

    图 2  卫星中间姿态示意图

    Figure 2.  Schematic diagram of intermediate attitude of satellite

    图 3  卫星期望姿态示意图

    Figure 3.  Schematic diagram of expected attitude of satellite

    图 4  对地偏差角在1.5年时间内的变化规律

    Figure 4.  Development of deviation of Earth-pointing within 1.5 years

    图 5  对日偏差角在1.5年时间内的变化规律

    Figure 5.  Development of deviation of Sun-pointing within 1.5 years

    图 6  连续6小时内对日偏差角的变化规律(2019年1月22日)

    Figure 6.  Development of deviation of Sun-pointing within consecutive 6 hours (2019-01-22)

    图 7  依据期望姿态差分得到的卫星x轴角速度

    Figure 7.  Angular velocity in x-axis obtained by difference of expected attitude

    图 8  依据期望姿态差分得到的卫星y轴角速度

    Figure 8.  Angular velocity in y-axis obtained by difference of expected attitude

    图 9  依据期望姿态差分得到的卫星z轴角速度

    Figure 9.  Angular velocity in z-axis obtained by difference of expected attitude

    图 10  卫星-地心连线和卫星-日心连线夹角的变化规律

    Figure 10.  Development of included angle between the satellite-Earth vector and the satellite-sun vector

    图 11  传统对日定向方法在1.5年时间内对期望姿态差分得到的角速度

    Figure 11.  Angular velocity obtained by difference of traditional expected attitude with 1.5 years

  • [1] 陈雪芹, 耿云海, 王峰, 等. 敏捷小卫星对地凝视姿态跟踪控制[J]. 光学精密工程, 2012, 20(5): 1031-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201205019.htm

    CHEN X Q, GENG Y H, WANG F, et al. Staring imaging attitude tracking control of agile small satellite[J]. Optics and Precision Engineering, 2012, 20(5): 1031-1040(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201205019.htm
    [2] 朱仁璋, 林彦. 航天器交会最终逼近段相对姿态估计与控制[J]. 北京航空航天大学学报, 2007, 33(5): 544-548. https://bhxb.buaa.edu.cn/CN/Y2007/V33/I05/544

    ZHU R Z, LIN Y. Relative attitude estimation and control schemes for the final approach phase of spacecraft rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 544-548(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2007/V33/I05/544
    [3] 贾英宏, 徐世杰, 陈统. 航天器扫描镜成像位置误差补偿技术[J]. 北京航空航天大学学报, 2012, 38(2): 14-20. https://bhxb.buaa.edu.cn/CN/Y2012/V/I2/153

    JIA Y H, XU S J, CHEN T. Imaging position error compensation of scan mirror for spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2): 14-20(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V/I2/153
    [4] 徐明, 贾英宏, 徐世杰. Halo轨道探测器的姿态描述与建模[J]. 北京航空航天大学学报, 2007, 33(10): 1166-1169. https://bhxb.buaa.edu.cn/CN/Y2007/V33/I10/1166

    XU M, JIA Y H, XU S J. Attitude description dynamics modeling for Halo-orbit spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1166-1169(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2007/V33/I10/1166
    [5] 李庆军, 邓子辰, 王艳, 等. 空间太阳能电站的准对日定向姿态[J]. 宇航学报, 2019, 40(1): 29-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201901004.htm

    LI Q J, DENG Z C, WANG Y, et al. Quasi-sun-pointing oriented attitude for solar power satellites[J]. Journal of Astronautics, 2019, 40(1): 29-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201901004.htm
    [6] JI H R, ZENG G Q. A method for spatial effective coverage analysis in space-based optical observation[J]. Optik, 2018, 166: 116-126. doi: 10.1016/j.ijleo.2018.04.012
    [7] STARIN S, BOURKLAND K.Persistent attitude error in a sun-pointing controller due to nonlinear dynamics[C]//Procreedings of the AIAA Guidance, Navigation & Control Conference & Exhibit.Reston: AIAA, 2013.
    [8] CROCKER II M C. Attitude control of a sun-pointing spinning spacecraft by means of solar radiation pressure[J]. Journal of Spacecraft and Rockets, 2015, 7(3): 357-359. doi: 10.2514/3.29939
    [9] BLAUSTEIN R. Earth observation needs space-based boost[J]. Physics World, 2018, 31(2): 8. http://adsabs.harvard.edu/abs/2018PhyW...31b...8B
    [10] ALI I, AL-DHAIR N, HERSHEY J E. Doppler characterization for LEO satellites[J]. IEEE Transactions on Communications, 1998, 46(3): 309-313. doi: 10.1109/26.662636
    [11] ALI I, AL-DHAIR N, HERSHEY J E. Predicting the visibility of LEO satellites[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 35(4): 1183-1190.
    [12] WU S F, PALMER P. Fast prediction algorithms of satellite imaging opportunities with attitude controls[J]. Journal of Guidance, Control, and Dynamics, 2015, 25(4): 3006-3009. doi: 10.2514/2.4948
    [13] FAN C S, YOU Z. Highly efficient sigma point filter for spacecraft attitude and rate estimation[J]. Mathematical Problems in Engineering, 2009, 2009(1024-123X): 266-287.
    [14] KNOBELSPIESSE K D, PIETRAS C, FARGION G S. Sun-pointing-error correction for sea deployment of the MICROTOPS Ⅱ handheld sun photometer[J]. Journal of Atmospheric & Oceanic Technology, 2003, 20(5): 767-771.
    [15] SEDLUND C A.A simple sun-pointing magnetic controller for satellites in equatorial orbits[C]//IEEE Aerospace Conference.Piscataway: IEEE Press, 2009.
  • 加载中
图(11)
计量
  • 文章访问数:  1364
  • HTML全文浏览量:  249
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 录用日期:  2020-08-07
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答