-
摘要:
针对麻雀搜索算法(SSA)在接近全局最优时,种群多样性减少,易陷入局部最优解等问题,提出了一种混沌麻雀搜索优化算法(CSSOA)。首先,通过改进Tent混沌序列初始化种群,提高初始解的质量,增强算法的全局搜索能力。其次,引入高斯变异的方法,加强局部搜索能力,提高搜索精度;同时以搜索停滞的解为基础产生Tent混沌序列,用此混沌序列对部分陷入局部最优的个体进行混沌扰动,促使算法跳出限制继续搜索。最后,对12个基准函数进行仿真实验。结果表明:所提算法能够克服SSA易陷入局部最优的缺点,提高算法的搜索精度、收敛速度和稳定性。同时,将CSSOA应用到简单图像分割问题,验证了CSSOA应用于实际工程问题的可行性。
Abstract:Aimed at the problem that when the Sparrow Search Algorithm (SSA) is close to the global optimum, the population diversity decreases, and it is easy to fall into the local optimal solution. A Chaotic Sparrow Search Optimization Algorithm (CSSOA) is proposed. Firstly, the population was initialized by improving the Tent chaotic sequence, the quality of the initial solution was improved, and the global search ability of the algorithm was strengthened. Secondly, the method of Gaussian mutation was introduced to strengthen the local search ability and improve the search accuracy. At the same time, a Tent chaotic sequence was generated based on the search stagnation solution, and this chaotic sequence was used to chaotically disturb some individuals who were partially trapped in the local optimum, prompting the algorithm to jump out of the limit and continue the search. Finally, through simulations of 12 benchmark functions, the results show that the proposed algorithm can overcome the shortcomings of SSA being easily trapped in local optimum, and improve the search accuracy, convergence speed and stability of the algorithm. Meanwhile, CSSOA is applied to the simple image segmentation problem, which verifies the feasibility of applying CSSOA to practical engineering problems.
-
表 1 基准函数
Table 1. Benchmark functions
函数类型 基准测试函数 维度 搜索空间 最优值 高维单峰 30 [-100, 100]n 0 30 [-10, 10]n 0 30 [-100, 100]n 0 30 [-100, 100]n 0 30 [-1.28, 1.28]n 0 高维多峰 30 [-500, 500]n -418.982 9n 30 [-5.12, 5.12]n 0 30 [-32, 32]n 0 30 [-600, 600]n 0 低维多峰 2 [-65, 65]2 1 6 [0, 1]4 -3.32 4 [0, 10]10 -10.536 表 2 基准函数优化结果比较
Table 2. Optimization result comparison of benchmark functions
类型 函数 PSO GWO WOA SSA CSSOA 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 高维单峰 F1 5.073 1.718 1.587×10-2 9.820×10-3 3.136×10-11 8.830×10-11 3.757×10-24 2.058×10-23 6.186×10-78 3.195×10-77 F2 6.920 2.727 2.516×10-2 9.797×10-3 1.637×10-8 4.417×10-8 1.673×10-13 7.279×10-13 1.745×10-40 4.160×10-40 F3 1.429×103 6.541×102 2.654×10-2 2.405×102 1.019×105 2.836×104 6.526×10-14 3.313×10-13 3.292×10-65 1.283×10-64 F4 5.159 1.412 1.503 6.449×10-1 6.399×10 2.410×10 6.980×10-16 3.278×10-15 5.188×10-39 2.247×10-38 F5 1.271×10 9.092 1.935×10-2 8.231×10-3 1.579×10-2 1.533×10-2 4.250×10-3 4.383×10-3 7.229×10-4 6.384×10-4 高维多峰 F6 -3.211×103 4.485×102 -5.466×103 9.532×102 -9.034×103 1.675×103 -8.513×103 6.873×102 -1.109×104 7.128×102 F7 1.896×102 4.051×101 4.288×101 1.779×10 3.923×10-1 1.271 2.266×102 3.867×10 0 0 F8 3.035 3.845×10-1 2.553×10-2 9.419×10-3 4.154×10-7 6.556×10-7 1.480×10-15 1.885×10-15 8.882×10-16 0 F9 2.977×101 8.579 2.474×10-1 1.233×10-1 8.940×10-2 2.365×10-1 4.736×10 5.372×10 0 0 低维多峰 F10 3.565 2.217 5.700 4.123 3.396 2.921 5.552 5.217 1.164 5.265×10-1 F11 -3.274 5.924×10-2 -3.228 8.406×10-2 -3.190 8.603×10-2 -3.267 6.033×10-2 -3.306 4.111×10-2 F12 -8.554 3.376 -9.778 2.227 -5.023 2.705 -7.647 2.738 -1.054×10 1.281×10-5 表 3 基准函数的优化结果比较
Table 3. Optimization result comparison of benchmark functions
函数 PSO GWO WOA SSA CSSOA 迭代次数 时间/s 迭代次数 时间/s 迭代次数 时间/s 迭代次数 时间/s 迭代次数 时间/s F1 100 0.033 100 0.061 100 0.190 95 0.128 6 0.021 F2 100 0.024 100 0.048 100 0.185 100 0.118 6 0.011 F3 100 0.193 100 0.225 100 0.351 100 0.417 7 0.054 F4 100 0.033 100 0.058 100 0.192 100 0.137 6 0.018 F5 100 0.035 100 0.061 100 0.192 100 0.139 4 0.014 F6 100 0.027 100 0.045 100 0.184 100 0.121 3 0.011 F7 100 0.036 100 0.068 100 0.196 42 0.067 5 0.024 F8 100 0.042 100 0.068 100 0.199 100 0.151 6 0.023 F9 100 0.049 100 0.073 100 0.206 41 0.066 5 0.017 F10 77 0.177 89 0.227 69 0.173 100 0.480 5 0.040 F11 82 0.036 85 0.055 98 0.087 100 0.174 9 0.027 F12 97 0.080 100 0.106 100 0.120 100 0.230 4 0.019 表 4 图像分割阈值
Table 4. Image segmentation threshold
类型 图像 最大值 最小值 平均值 标准差 标准测试图像 Lena 118 116 117.033 0.490 Man 91 88 89.067 0.450 舰船SAR图像 图像1 124 121 123.067 0.583 图像2 126 124 125.100 0.403 -
[1] 王龙龙. 基于改进鸟群算法在图像分割中的应用[D]. 赣州: 江西理工大学, 2019: 5.WANG L L. Application of improved bird group algorithm in image segmentation[D]. Ganzhou: Jiangxi University of Science and Technology, 2019: 5(in Chinese). [2] XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. doi: 10.1080/21642583.2019.1708830?tab=permissions [3] 刘明霞, 游晓明, 刘升. 基于聚度的自适应动态混沌蚁群算法[J]. 计算机工程与应用, 2019, 55(3): 15-22.LIU M X, YOU X M, LIU S. Adaptive dynamic chaotic ant colony algorithm based on degree of aggregation[J]. Computer Engineering and Applications, 2019, 55(3): 15-22(in Chinese). [4] 杨万里, 周雪婷, 陈孟娜. 基于Logistic映射的新型混沌简化PSO算法[J]. 计算机与现代化, 2019(12): 15-20. doi: 10.3969/j.issn.1006-2475.2019.12.004YANG W L, ZHOU X T, CHEN M N. New chaotic simplified particle swarm optimization algorithm based on logistic mapping[J]. Computer and Modernization, 2019(12): 15-20(in Chinese). doi: 10.3969/j.issn.1006-2475.2019.12.004 [5] 董丽凤, 陈阳, 巫光福. 动态学习混沌映射的粒子群算法[J]. 计算机应用研究, 2019, 36(5): 1319-1322.DONG L F, CHEN Y, WU G F. Chaotic mapping particle swarm optimization algorithm based on variable learning factors[J]. Application Research of Computers, 2019, 36(5): 1319-1322(in Chinese). [6] 韩敏, 何泳. 基于高斯混沌变异和精英学习的自适应多目标粒子群算法[J]. 控制与决策, 2016, 31(8): 1372-1378.HAN M, HE Y. Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning[J]. Control and Decision, 2016, 31(8): 1372-1378(in Chinese). [7] IBRAHIM R A, ELAZIZ M A, LU S F. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization[J]. Expert Systems with Applications, 2018, 108: 1-27. doi: 10.1016/j.eswa.2018.04.028 [8] TENG Z J, LV J L, GUO L W. An improved hybrid grey wolf optimization algorithm[J]. Soft Computing, 2019, 23(15): 6617-6631. doi: 10.1007/s00500-018-3310-y [9] 郝晓弘, 宋吉祥, 周强, 等. 混合策略改进的鲸鱼优化算法[J]. 计算机应用研究, 2020, 37(12): 108-112.HAO X H, SONG J X, ZHOU Q, et al. Improved whale optimization algorithm based on hybrid strategy[J]. Application Research of Computers, 2020, 37(12): 108-112(in Chinese). [10] 匡芳君, 徐蔚鸿, 金忠. 自适应Tent混沌搜索的人工蜂群算法[J]. 控制理论与应用, 2014, 31(11): 1502-1509. doi: 10.7641/CTA.2014.31114KUANG F J, XU W H, JIN Z. Artificial bee colony algorithm based on self-adaptive tent chaos search[J]. Control Theory & Application, 2014, 31(11): 1502-1509(in Chinese). doi: 10.7641/CTA.2014.31114 [11] LIU L F, SUN S Z, YU H Y, et al. A modified fuzzy C-means (FCM) clustering algorithm and its application on carbonate fluid identification[J]. Journal of Applied Geophysics, 2016, 129: 28-35. doi: 10.1016/j.jappgeo.2016.03.027 [12] 单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005, 20(2): 179-182. doi: 10.3321/j.issn:1001-0920.2005.02.013SHAN L, QIANG H, LI J, et al. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005, 20(2): 179-182(in Chinese). doi: 10.3321/j.issn:1001-0920.2005.02.013 [13] 张娜, 赵泽丹, 包晓安, 等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策, 2020, 35(4): 893-900.ZHANG N, ZHAO Z D, BAO X A, et al. Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4): 893-900(in Chinese). [14] 江铭炎, 袁东风. 人工蜂群算法及其应用[M]. 北京: 科学出版社, 2014: 110-113.JIANG M Y, YUAN D F. Artificial bee colony algorithm and its application[M]. Beijing: Science Press, 2014: 110-113(in Chinese). [15] 王晓慧, 刘雪英, 白梅花. 引入高斯变异和最速下降算子的人口迁移算法[J]. 计算机工程与应用, 2009, 45(20): 57-60. doi: 10.3778/j.issn.1002-8331.2009.20.017WANG X H, LIU X Y, BAI M H. Population migration algorithm with Gaussian mutation and the steepest descent operator[J]. Computer Engineering and Applications, 2009, 45(20): 57-60(in Chinese). doi: 10.3778/j.issn.1002-8331.2009.20.017 [16] RUDOLPH G. Local convergence rates of simple evolutionary algorithms with Cauchy mutations[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(4): 249-258. doi: 10.1109/4235.687885 [17] 李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9): 1953-1959.LI J W, QU C W, PENG S J, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9): 1953-1959(in Chinese).