留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀间距的低副瓣宽带微带阵列天线设计

徐统民 姚敏立 张峰干 王旭健

徐统民, 姚敏立, 张峰干, 等 . 非均匀间距的低副瓣宽带微带阵列天线设计[J]. 北京航空航天大学学报, 2021, 47(9): 1884-1891. doi: 10.13700/j.bh.1001-5965.2020.0299
引用本文: 徐统民, 姚敏立, 张峰干, 等 . 非均匀间距的低副瓣宽带微带阵列天线设计[J]. 北京航空航天大学学报, 2021, 47(9): 1884-1891. doi: 10.13700/j.bh.1001-5965.2020.0299
XU Tongmin, YAO Minli, ZHANG Fenggan, et al. Design of low sidelobe broadband microstrip array antenna with non-uniform spacing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1884-1891. doi: 10.13700/j.bh.1001-5965.2020.0299(in Chinese)
Citation: XU Tongmin, YAO Minli, ZHANG Fenggan, et al. Design of low sidelobe broadband microstrip array antenna with non-uniform spacing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1884-1891. doi: 10.13700/j.bh.1001-5965.2020.0299(in Chinese)

非均匀间距的低副瓣宽带微带阵列天线设计

doi: 10.13700/j.bh.1001-5965.2020.0299
基金项目: 

国家自然科学基金 61601474

详细信息
    通讯作者:

    姚敏立, E-mail: yaominli66@163.com

  • 中图分类号: TN823+.24;V221+.3;TN822+.4

Design of low sidelobe broadband microstrip array antenna with non-uniform spacing

Funds: 

National Natural Science Foundation of China 61601474

More Information
  • 摘要:

    为降低天线副瓣电平(SLL)和展宽带宽,设计了一款谐振频率为14.25 GHz的16阵元非均匀间距的耦合馈电微带阵列天线。天线采用多层设计,通过在接地板开矩形槽进行耦合馈电,并引入空气层,降低天线Q值,增大带宽。区别于均匀间距阵列天线的激励幅值加权,从阵元间距角度入手,利用差分进化算法降低副瓣电平,构建非均匀间距并联线阵天线。用槽面辐射的能量近似代替阵元接收的能量,观察阵元功率分配情况,并建立馈电网络所有馈线段的数学关系,保证非均匀间距条件下所有阵元为等幅同相激励。测试结果显示,天线在14~14.5 GHz范围内电压驻波比小于2,满足了卫星动中通的带宽要求;工作带宽内增益大于16 dB,副瓣电平低于-16 dB,性能优于均匀间距阵列天线。

     

  • 图 1  天线单元示意图

    Figure 1.  Schematic diagram of antenna element

    图 2  仿真模型

    Figure 2.  Simulation model

    图 3  天线单元电压驻波比

    Figure 3.  Antenna element voltage standing wave ratio

    图 4  天线单元方向图

    Figure 4.  Antenna element pattern

    图 5  非均匀间距阵列天线示意图

    Figure 5.  Schematic diagram of non-uniform spacing array antenna

    图 6  副瓣电平理论值

    Figure 6.  Sidelobe theoretical value

    图 7  并联馈电网络支路结构关系

    Figure 7.  Structure relationship of parallel feed network branch

    图 8  天线馈电网络

    Figure 8.  Antenna feed network

    图 9  坡印廷矢量

    Figure 9.  Poynting vector

    图 10  不同l0下回波损耗随频率的变化

    Figure 10.  Frequency dependence of return loss under different l0 conditions

    图 11  不同l2下回波损耗随频率的变化

    Figure 11.  Frequency dependence of return loss under different l2 conditions

    图 12  不同h2下回波损耗随频率的变化

    Figure 12.  Frequency dependence of return loss under different h2 conditions

    图 13  天线实物图

    Figure 13.  Photograph of antenna

    图 14  天线电压驻波比和增益

    Figure 14.  Antenna voltage standing wave ratio and gain

    图 15  天线方向图

    Figure 15.  Antenna pattern

    表  1  天线设计指标

    Table  1.   Antenna design index

    天线参数 指标要求
    工作频段 Ku波段
    中心频率/GHz 14.25
    带宽/MHz 500
    极化方式 线极化
    阵列形式 线阵
    辐射方向 边射阵
    天线增益/dB ≥16
    副瓣电平/dB ≤-16
    下载: 导出CSV

    表  2  阵元位置

    Table  2.   Array element position

    序号 位置
    1 0
    2 0.810 4λ
    3 1.593 3λ
    4 2.245 7λ
    5 2.750 2λ
    6 3.302 3λ
    7 3.754 2λ
    8 4.235 9λ
    9 4.685 9λ
    10 5.167 5λ
    11 5.619 4λ
    12 6.171 5λ
    13 6.676 1λ
    14 7.328 4λ
    15 8.111 3λ
    16 8.921 7λ
    下载: 导出CSV

    表  3  馈电网络端口功率分配和相位值

    Table  3.   Power distribution and phase value of feed network port

    端口 功率值/dB 相位值/(°)
    1 -12.08 86.84
    2 -12.29 87.33
    3 -12.15 87.24
    4 -12.47 87.38
    5 -12.60 87.77
    6 -12.34 87.04
    7 -12.25 87.06
    8 -12.30 89.58
    9 -12.43 89.67
    10 -12.22 91.40
    11 -12.11 91.39
    12 -12.41 88.84
    13 -12.50 88.90
    14 -12.25 90.11
    15 -12.16 89.86
    16 -11.99 86.91
    下载: 导出CSV

    表  4  流过矩形槽的功率

    Table  4.   Power passing through rectangular slots

    序号 功率/W
    1 0.042
    2 0.041
    3 0.039
    4 0.048
    5 0.049
    6 0.048
    7 0.040
    8 0.040
    9 0.044
    10 0.048
    11 0.046
    12 0.039
    13 0.040
    14 0.041
    15 0.043
    16 0.039
    下载: 导出CSV

    表  5  天线参数

    Table  5.   Antenna parameters

    参数 数值/mm 参数 数值/mm
    LP 7 l510 0.21
    W1 2.43 l512 16.81
    l501 7 l514 5
    l503 5 l516 5
    l505 2.09 w501 1.90
    l507 0.99 h2 2
    l509 5.96 q1 17.83
    l511 5 q2 35.05
    l513 25.17 q3 49.41
    l515 46.46 q4 60.50
    w50 2.43 q5 72.65
    h1 0.787 q6 82.59
    l0 1.4 q7 93.19
    W2 0.4 q8 103.1
    l502 3.83 w70 1.37
    l504 10.70 l70 3.87
    l506 12.44 l2 6.80
    l508 5.19 h3 0.254
    下载: 导出CSV

    表  6  不同频点性能对比

    Table  6.   Performance comparison at different frequencies

    频率/GHz 增益/dB 副瓣电平/dB 主瓣宽度/(°)
    仿真值 测试值 仿真值 测试值 仿真值 测试值
    14 17.32 16.53 -18.55 -17.9 5.18 5.58
    14.25 16.83 16.31 -19.17 -16.75 4.99 5.38
    14.5 16.22 16.04 -18.32 -17.82 5.05 5.36
    下载: 导出CSV
  • [1] 尹文禄. 微带天线设计与天线测量系统构建[D]. 长沙: 国防科学技术大学, 2004.

    YIN W L. The design of microstrip antenna and construction of antenna-measuring system[D]. Changsha: National University of Defense Technology, 2004(in Chinese).
    [2] BAHL J, GARG R, BHARTIA P, et al. Microstrip antenna design handbook[M]. Boston: Artech House, 2001.
    [3] LOGHMANNIA P, KAMYAB M, RANJBAR NIKKHAH M, et al. Analysis and design of a lowsidelobe level and wide-band aperture coupled microstrip antenna array using FDTD[C]//2013 21st Iranian Conference on Electrical Engineering (ICEE). Piscataway: IEEE Press, 2013: 1-4.
    [4] 段雷. 77 GHz微带阵列天线的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    DUAN L. Research on 77 GHz microstrip array antenna[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [5] ABREU D, FREITAS G T. A modified Dolph-Chebyshev approach for the synthesis of low sidelobe beampatterns with adjustable beamwidth[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 3014-3017. doi: 10.1109/TAP.2003.817989
    [6] CHEN K D, ZHONG S S, TANG X R, et al. Low-sidelobe circularly-polarized microstrip array for RFID reader applications[C]//2007 IET Conference on Wireless, Mobile and Sensor Networks (CCWMSN07), 2007: 482-484.
    [7] HA B V, MUSSETTA M, PIRINOLI P, et al. Modified compact genetic algorithm for thinned array synthesis[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1105-1108. doi: 10.1109/LAWP.2015.2494839
    [8] GOUDOS S. Antenna design using binary differential evolution: Application to discrete-valued design problems[J]. IEEE Antennas and Propagation Magazine, 2017, 59(1): 74-93. doi: 10.1109/MAP.2016.2630041
    [9] CHENG Y F, SHAO W, ZHANG R, et al. Thinning and weighting of planar/conformal arrays considering mutual coupling effects[J]. International Journal of Antennas and Propagation, 2016: 1-10. http://www.onacademic.com/detail/journal_1000040481537810_9d71.html
    [10] ZAINAL N A, KAMARUDIN M R, YAMADA Y, et al. Sidelobe reduction of unequally spaced arrays for 5G applications[C]//2016 10th European Conference on Antennas and Propagation (EuCAP). Piscataway: IEEE Press, 2016: 1-4.
    [11] WIN M Z, SCHOLTZ R A. On the energy capture of ultrawide bandwidth signals in dense multipath environments[J]. IEEE Communications Letters, 1998, 2(9): 245-247. doi: 10.1109/4234.718491
    [12] RATHI V, KUMAR G, RAY K P. Improved coupling for aperture coupled microstrip antennas[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(8): 1196-1198. doi: 10.1109/8.511831
    [13] 李勋. X波段宽带微带阵列天线设计[J]. 无线通信技术, 2016, 25(1): 41-45. doi: 10.3969/j.issn.1003-8329.2016.01.009

    LI X. Design of broadband microstrip array antenna for X-band[J]. Wireless Communication Technology, 2016, 25(1): 41-45(in Chinese). doi: 10.3969/j.issn.1003-8329.2016.01.009
    [14] DESHMUKH A, RAY K P. Analysis of broadband variations of U-slot cut rectangular microstrip antennas[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 181-193. doi: 10.1109/MAP.2015.2414533
    [15] 钟顺时. 天线理论与技术[M]. 北京: 电子工业出版社, 2011: 290-296.

    ZHONG S S. Antenna theory and techniques[M]. Beijing: Publishing House of Electronics industry, 2011: 290-296(in Chinese).
    [16] WANG X J, YAO M L, DAI D C, et al. Synthesis of linear sparse arrays based on dynamic parameters differential evolution algorithm[J]. IET Microwaves, Antennas & Propagation, 2019, 13(9): 1491-1497. http://www.researchgate.net/publication/333353628_Synthesis_of_linear_sparse_arrays_based_on_dynamic_parameters_differential_evolution_algorithm
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  988
  • HTML全文浏览量:  153
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 录用日期:  2020-09-19
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答