留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于高轨空间的GNSS矢量跟踪方案设计

杨洁 王新龙 陈鼎

杨洁, 王新龙, 陈鼎等 . 一种适用于高轨空间的GNSS矢量跟踪方案设计[J]. 北京航空航天大学学报, 2021, 47(9): 1799-1806. doi: 10.13700/j.bh.1001-5965.2020.0300
引用本文: 杨洁, 王新龙, 陈鼎等 . 一种适用于高轨空间的GNSS矢量跟踪方案设计[J]. 北京航空航天大学学报, 2021, 47(9): 1799-1806. doi: 10.13700/j.bh.1001-5965.2020.0300
YANG Jie, WANG Xinlong, CHEN Dinget al. Design of a GNSS vector tracking scheme for high-orbit space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1799-1806. doi: 10.13700/j.bh.1001-5965.2020.0300(in Chinese)
Citation: YANG Jie, WANG Xinlong, CHEN Dinget al. Design of a GNSS vector tracking scheme for high-orbit space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1799-1806. doi: 10.13700/j.bh.1001-5965.2020.0300(in Chinese)

一种适用于高轨空间的GNSS矢量跟踪方案设计

doi: 10.13700/j.bh.1001-5965.2020.0300
基金项目: 

国家自然科学基金 61673040

国家自然科学基金 61074157

航空科学基金 2015ZC51038

航空科学基金 20170151002

试验技术项目 1700050405

天地一体化信息技术国家重点实验室基金 2015-SGIIT-KFJJ-DH-01

重点基础研究项目 2020-JCJQ-ZD-136-12

详细信息
    通讯作者:

    王新龙, E-mail: xlwon@163.com

  • 中图分类号: V249.32+8

Design of a GNSS vector tracking scheme for high-orbit space

Funds: 

National Natural Science Foundation of China 61673040

National Natural Science Foundation of China 61074157

Aeronautical Science Foundation of China 2015ZC51038

Aeronautical Science Foundation of China 20170151002

Project of the Experimentation and Technology 1700050405

Open Research Fund of State Key Laboratory of Space-Ground Information Technology 2015-SGIIT-KFJJ-DH-01

Key Basic Research Projects 2020-JCJQ-ZD-136-12

More Information
  • 摘要:

    高轨空间中全球卫星导航系统(GNSS)信号可用性严重变差,对GNSS接收机的跟踪性能提出更高要求。利用GNSS信号传播链路模型分析了高轨空间GNSS信号特点,对比了标量跟踪和矢量跟踪这2类典型跟踪环路在高轨空间的适用性,进而设计了一种适用于高轨空间的GNSS矢量跟踪方案。该方案通过估计载噪比确定量测噪声方差阵,以对各通道量测信息进行加权处理来获得高精度的导航参数;并根据高轨航天器的动态性能确定过程噪声方差阵,利用轨道动力学模型对导航参数进行一步预测,从而实现了对各通道信号跟踪参数的准确预测及联合跟踪。仿真验证表明:所设计的跟踪方案可实现高轨空间中强信号对弱信号的辅助跟踪,从而提高了高轨空间中弱信号的跟踪性能及可用性,并对中断信号具有一定的桥接能力。

     

  • 图 1  高轨空间GNSS信号传播链路示意图

    Figure 1.  Schematic of GNSS signal transmission link in high-orbit space

    图 2  发射天线增益曲线

    Figure 2.  Curves of transmitting antenna gain

    图 3  信号接收功率统计结果

    Figure 3.  Statistical results of signal received power

    图 4  信号接收功率和仰角随时间变化曲线

    Figure 4.  Signal received power and elevation over time

    图 5  标量跟踪环路结构框图

    Figure 5.  Block diagram of scalar tracking loop

    图 6  矢量跟踪环路结构框图

    Figure 6.  Block diagram of vector tracking loop

    图 7  高轨空间GNSS矢量跟踪方案结构框图

    Figure 7.  Block diagram of GNSS vector tracking scheme for high-orbit space

    图 8  多普勒频移变化率随时间变化曲线

    Figure 8.  Doppler shift variation rate over time

    图 9  信号中断通道的码相位残差和载波频率残差

    Figure 9.  Code phase residual and carrier frequency residual of signal outage channel

    图 10  信号中断通道的相关功率

    Figure 10.  Correlation power of signal outage channel

    图 11  码相位和载波频率误差标准差统计结果

    Figure 11.  Statistical results of code phase and carrier frequency error standard deviation

    图 12  位置误差和速度误差曲线(标量跟踪)

    Figure 12.  Curves of position error and velocity error(scalar tracking)

    图 13  位置误差和速度误差统计结果(矢量跟踪)

    Figure 13.  Statistical results of position error and velocity error (vector tracking)

  • [1] ASHMAN B W, BAUER F H, PARKER J J K, et al. GPS operations in high earth orbit: Recent experiences and future opportunities[C]//AIAA SpaceOps Conferences. Reston: AIAA, 2018: 1-15.
    [2] United Nations Office for Outer Space Affairs. The interoperable global navigation satellite systems space service[R]. Vienna: United Nations Office for Outer Space Affrirs, 2018: 1-5.
    [3] 柴嘉薪, 王新龙, 俞能杰, 等. 高轨航天器GNSS信号链路建模与强度分析[J]. 北京航空航天大学学报, 2018, 44(7): 1496-1503. doi: 10.13700/j.bh.1001-5965.2017.0502

    CHAI J X, WANG X L, YU N J, et al. Modeling and intensity analysis of GNSS signal link for high-orbit spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1496-1503(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0502
    [4] MOREUA M C. GPS receiver architecture for autonomous navigation in high earth orbits[D]. Boulder: University of Colorado, 2001: 157-166.
    [5] SU X, GENG T, LI W W, et al. Chang'E-5T orbit determination using onboard GPS observations[J]. Sensors, 2017, 17(6): 1260. doi: 10.3390/s17061260
    [6] MOREAU M C, DAVIS E P, RUSSELL J. Results from the GPS flight experiment on the high earth orbit AMSAT OSCAR-40 spacecraft[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2002: 122-133.
    [7] WINTERNITZ L B, BAMFORD W A, PRICE S R, et al. Global positioning system navigation above 76000 km for NASA's magnetospheric multiscale mission[J]. Journal of the Institute of Navigation, 2017, 64(2), 289-300. doi: 10.1002/navi.198
    [8] 高阳, 王猛, 刘蕾, 等. 基于高轨航天器的GNSS接收机技术[J]. 中国空间科学技术, 2017, 37(3): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201703014.htm

    GAO Y, WANG M, LIU L, et al. GNSS receiver techniques based on high earth orbit spacecraft[J]. Chinese Space Science and Technology, 2017, 37(3): 101-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201703014.htm
    [9] CAPUANO V, BOTTERON C, LECLERE J, et al. Feasibility study of GNSS as navigation system to reach the Moon[J]. Acta Astronautica, 2015, 116: 186-201. doi: 10.1016/j.actaastro.2015.06.007
    [10] JIN S, ZHAN X Q, LIU B Y, et al. Weak and dynamic GNSS signal tracking strategies for flight missions in the space service volume[J]. Sensors, 2016, 16: 1412. http://www.chemeurope.com/en/publications/995506/sensors-vol-16-pages-1412-weak-and-dynamic-gnss-signal-tracking-strategies-for-flight-missions-in-the-space-service-volume.html?WT.mc_id=ca0438
    [11] LASHLEY M, BEVLY D M, HUNG J Y. Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 661-673. doi: 10.1109/JSTSP.2009.2023341
    [12] 程俊仁, 刘光斌, 姚志成. GNSS接收机矢量跟踪算法研究综述[J]. 宇航学报, 2014, 35(4): 380-387. doi: 10.3873/j.issn.1000-1328.2014.04.002

    CHENG J R, LIU G B, YAO Z C. Review on vector tracking algorithm for GNSS receiver[J]. Journal of Astronautics, 2014, 35(4): 380-387(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.04.002
    [13] MARQUIS W A, REIGH D L. The GPS block IIR and IIR-M broadcast L-band antenna panel: Its pattern and performance[J]. Journal of the Institute of Navigation, 2015, 62(4): 329-347. doi: 10.1002/navi.123
    [14] ICD-GPS-240C. 2019[EB/OL]. [2020-06-24]. https://www.gps.gov/technical/icwg/.
    [15] SUN Z Y, WANG X L, FENG S J, et al. Design of an adaptive GPS vector tracking loop with the detection and isolation of contaminated channels[J]. GPS Solutions, 2017, 21(2): 701-713. doi: 10.1007/s10291-016-0558-5
    [16] PARKINSON B W, SPILKER J J, AXELRAD P, et al. Global positioning system: Theory and applications, volume 1[M]. Reston: AIAA, 1996: 390-392.
    [17] 肖志斌, 唐小妹, 庞晶, 等. 矢量延迟锁定环码跟踪偏差产生机理研究[J]. 中国科学: 物理学力学天文学, 2010, 40(5): 568-574. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201005013.htm

    XIAO Z B, TANG X M, PANG J, et al. The study of code tracking bias in vector delay lock loop[J]. Scientic Sinica Physica, Mechanica & Astronomica, 2010, 40(5): 568-574(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201005013.htm
  • 加载中
图(13)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  102
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 录用日期:  2020-12-21
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答