-
摘要:
航空电子机内无线通信(WAIC)在降低飞机重量和节省成本等方面的优势让其在航空电子系统的应用上具有可观的前景。为了研究基于802.11的WAIC网络的传输延迟并保证其可靠性,提出了一种优先级赤字轮询调度(PDRR)的介质访问控制(MAC)协议。首先,通过确定性网络演算方法为MAC层协议的活动建立了到达曲线和服务曲线模型。其次,充分考虑无线通信物理层的特点和所结合信道反转方法,给出了WAIC网络流量调度最坏情况下的端到端延迟的评价方法,可以发现信道反转后稳定的信道容量提供了较为保守的延迟界限。最后,通过案例分析对比了高优先级的WAIC节点与普通优先级节点的延迟界限以及信道反转的影响。结果表明:高优先级节点比普通优先级节点具有更好的实时性,并且可以通过增加平均信噪比来改善传输的延迟界限。
-
关键词:
- 赤字轮询(DRR) /
- 航空电子机内无线通信(WAIC) /
- 航空电子 /
- 网络演算 /
- 信道反转
Abstract:The advantages of Wireless Avionics Intra-Communication (WAIC) in reducing aircraft weight and saving cost make it have considerable prospects in the application of avionics systems. In this paper, a Media Access Control (MAC) protocol based on Priority-Deficit Round Robin (PDRR) scheduling is proposed to study the transmission delay of WAIC network based on 802.11 and guarantee its reliability. First, the arrival curve and service curve model for the MAC layer protocol were established by deterministic network calculus where the characteristics of the wireless communication physical layer and the combined channel inversion method were fully considered. Then, based on the worst-case end-to-end delay evaluation method for WAIC network traffic scheduling, it could be found that the stable channel capacity after channel inversion provides a more conservative delay bound. Finally, the delay bound of high-priority WAIC nodes and normal-priority nodes and the influence of channel inversion were compared through case analysis. The results show that high-priority nodes have better real-time performance than normal-priority nodes and the transmission delay bound can be improved by increasing the average signal-to-noise ratio.
-
表 1 仿真节点信息
Table 1. Information of nodes in simulation
节点名称 节点类型 包最大长度/Byte FrontCamera 高优先级节点 500 HeadUnit 普通优先级节点 750 RightCamera 普通优先级节点 700 LeftCamera 普通优先级节点 500 Access Point 网络接入点 -
[1] PARK P, DI MARCO P, NAH J, et al. Wireless avionics intra-communications: A survey of benefits, challenges, and solutions[EB/OL]. [2020-05-22]. https://arxiv.org/abs/2006.12060. [2] ZHANG C, XIAO J, ZHAO L. Wireless asynchronous transfer mode based fly-by-wireless avionics network[C]//2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2013: 1-9. [3] DANG D, MIFDOUI A, GAYRAUD T. Design and analysis of UWB-based network for reliable and timely communications in safety-critical avionics[C]//2014 10th IEEE Workshop on Factory Communication Systems. Piscataway: IEEE Press, 2014: 1-10. [4] DANG D, MIFDOUI A. Performance optimization of a UWB-based network for safety-critical avionics[C]//Proceedings of the 2014 IEEE Emerging Technology and Factory Automation(ETFA). Piscataway: IEEE Press, 2014: 1-9. [5] SAMBOU B C, PEYRARD F, FRABOUL C. AFDX wireless scheduler and free bandwidth managing in 802.11e(HCCA)/AFDX network[C]//2011 7th International Wireless Communications and Mobile Computing Conference, 2011: 2109-2114. [6] SAMBOU B C, PEYRARD F, FRABOUL C. Scheduling avionics flows on an IEEE 802.11e HCCA and AFDX hybrid network[C]//2011 IEEE Symposium on Computers and Communications (ISCC). Piscataway: IEEE Press, 2011: 205-212. [7] SAMBOU B C. Systèmes communicants sans fil pour les réseaux avioniques embarqués[D]. Toulouse: University of Toulouse, 2012: 66-68. SAMBOU B C. Wireless communicating systems for on-board avionics[D]. Toulouse: University of Toulouse(in French). [8] SÁMANO-ROBLES R, TOVAR E, CINTRA J, et al. Wireless avionics intra-communications: Current trends and design issues[C]//2016 Eleventh International Conference on Digital Information Management (ICDIM). Piscataway: IEEE Press, 2016: 266-273. [9] SONI A, LI X, SCHARBARG J, et al. Integrating offset in worst case delay analysis of switched ethernet network with deficit round robbin[C]//2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway: IEEE Press, 2018: 353-359. [10] SONI A, LI X, SCHARBARG J, et al. Optimizing network calculus for switched ethernet network with deficit round robin[C]//2018 IEEE Real-Time Systems Symposium (RTSS). Piscataway: IEEE Press, 2018: 300-311. [11] SONI A, SCHARBARG J L, ERMONT J. Quantum assignment for QoS-aware AFDX network with deficit round robin[C]//Proceedings of the 27th International Conference on Real-Time Networks and Systems. New York: ACM, 2019: 70-79. [12] LENZINI L, MINGOZZI E, STEA G. Bandwidth and latency analysis of modified deficit round robin scheduling algorithms[C]//Proceedings of the 1st international Conference on Performance Evaluation Methodolgies and Tools. New York: ACM, 2006: 41-52. [13] MERSCH S, MEYERHOFF T, KRVGER L, et al. Coexistence of wireless avionics intra-communication networks[C]//2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). Piscataway: IEEE Press, 2018: 18-23. [14] SÁMANO-ROBLES R. MAC-PRY cross-layer design for secure wireless avionics intra-communications[C]//2019 Eighth International Conference on Emerging Security Technologies(EST). Piscataway: IEEE Press, 2019: 1-7. [15] ZHENG L, FENGYU L, ZHANG Y, et al. Capacity and spatial correlation measurements for wideband distributed MIMO channel in aircraft cabin environment[C]//2012 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2012: 1175-1179. [16] WirelessCabin, FP4 EU project[EB/OL]. [2020-05-22]. http://wirelesscabin.triagnosys.com/. [17] BOYER M, STEA G, SOFACK W M. Deficit round robin with network calculus[C]//6th International ICST Conference on Performance Evaluation Methodologies and Tools. Piscataway: IEEE Press, 2012: 138-147. [18] BOUDEC J Y L, THIRAN P. Network calculus: A theory of deterministic queuing systems for the internet[M]. Berlin: Springer, 2001: 33-34. [19] WU J S, KUO F. Bounds on waiting time for multiplexing leaky bucket enforced sources in ATM networks[J]. IEEE Proceedings-Communications, 1997, 144(1): 17-23. doi: 10.1049/ip-com:19970957 [20] CRUZ R L. A calculus for network delay, Part Ⅰ: Network elements in isolation[J]. IEEE Transactions on Information Theory, 1991, 37(1): 114-131. [21] GOLDSMITH A. Wireless communications[M]. Beijing: Posts & Telecom Press, 2007: 88-93. [22] ERAMO V, LAVACCA F G, LISTANTI M, et al. Performance evaluation of TTEthernet-based architectures for the VEGA launcher[C]//2018 IEEE Aerospace Conference, Big Sky, MT. Piscataway: IEEE Press, 2018: 1-6. [23] LEIPOLD F, TASSETTO D, BOVELLI S. Wireless in-cabin communication for aircraft infrastructure[J]. Journal of Telecommunication Systems, 2013, 52(2): 1211-1232. [24] ZHU X, YUAN D. Cross-layer design for MIMO correlated Nakagami fading channels[C]//2007 International Workshop on Cross Layer Design. Piscataway: IEEE Press, 2007: 50-54. [25] IEEE 802.11 Working Group. IEEE Std 802.11ac Part 11: Wireless LAN medium access control(MAC) and physical layer(PHY) specifications; Amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz: IEEE 802.11[S]. Piscataway: IEEE Press, 2013: 1-425. [26] International Tecommunication Union-Radiocommunication Sector. Technical characteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation[S]. Geneva: ITU, 2013: 55-70.