-
摘要:
系留气动载荷作为无人直升机系留装置的设计输入,通常以机身大风侧向角气动特性风洞试验数据为基础进行计算。采用CFD计算方法对某无人直升机算例样机的机身大风侧向角气动特性进行了计算,包括自由来流、停放在开阔地面和船艉甲板3个状态,以机身气动特性CFD计算结果为基础计算了其系留气动载荷。结果表明:无人直升机在开阔地面停放时的系留气动载荷与自由来流时基本一致。而受船体上层建筑的影响,停放在船艉甲板时的系留气动载荷与自由来流时有较大的差别,除部分风侧向角状态的偏航力矩之外,力和部分力矩的绝对值相对较小,部分风侧向角状态的力和力矩方向相反。研究结果可为选取无人直升机系留气动载荷计算方法和不同停放环境下的机身气动特性的CFD计算及风洞试验状态提供一定的参考。
Abstract:The tie-down aerodynamic load is used as the design input for the mooring device of the helicopter. In the past, it was usually calculated based on the wind tunnel test data of the large wind side angle aerodynamic characteristics of the fuselage. First, the CFD method was used to calculate the aerodynamic characteristics of the large wind side angle of an unmanned helicopter fuselage, including free flow, parking on the open ground and ship bow deck. Based on the CFD calculation results of the aerodynamic characteristics of the fuselage, the tie-down aerodynamic load was calculated. The results show that when the unmanned helicopter is parked on the open ground, the tie-down aerodynamic load is basically the same as that of the free flow. However, due to the influence of the ship's superstructure, the difference between the tie-down aerodynamic load when parked on ship bow deck and that of the free flow is large. The absolute values of force and part of the moment of force are relatively small, and the direction of the force and the moment of force are opposite in the case of some wind side angles. The research results can provide a certain reference for selecting the calculation method of helicopter tie-down aerodynamic load, the CFD calculation and the wind tunnel test status of the aerodynamic characteristics of the fuselage in different parking environments.
-
Key words:
- unmanned helicopter /
- tie-down /
- aerodynamic load /
- open ground /
- ship bow deck /
- CFD
-
表 1 计算状态
Table 1. Calculation status
参数 范围 迎角 0° 风侧向角 0°~345°(间隔15°) 表 2 不同计算模型网格数量
Table 2. Number of grids in each calculation model
类型 四面体网格 多面体网格 自由来流 105.1×104 34.5×104 开阔地面 101.4×104 35.2×104 船艉甲板 178.9×104 50.4×104 -
[1] 孙淑菩, 田石鳞, 黄蓝. 舰载直升机系留载荷及全机应力计算方法研究[J]. 航空学报, 1989, 10(10): 489-494. doi: 10.3321/j.issn:1000-6893.1989.10.005SUN S P, TIAN S L, HUANG L. Analysis methods of tie-down loads and airframes tress for shipboard-helicopters[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(10): 489-494(in Chinese). doi: 10.3321/j.issn:1000-6893.1989.10.005 [2] 李进军, 刘土光, 夏鸿飞. 舰载直升机系留计算分析[J]. 华中理工大学学报, 1996, 24(8): 94-96.LI J J, LIU T G, XIA H F. Mooring computation of the ship-based helicopter[J]. Journal of Huazhong University of Science and Technology, 1996, 24(8): 94-96(in Chinese). [3] 金仲林. 舰载直升机系留座分布及系留载荷的仿真研究[D]. 南京: 南京航空航天大学, 2006.JIN Z L. Research on design of mooring bed distribution and simulation of mooring loads for ship-based helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006(in Chinese). [4] 王丹. 船载直升机系留载荷分析及优化设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 14-20.WANG D. Research on analysis of mooring loads and optimization design for ship-based helicopter[D]. Harbin: Harbin Engineering University, 2008: 14-20(in Chinese). [5] 郑亚雄. 基于能量原理的直升机系留载荷计算[J]. 直升机技术, 2011(1): 6-9.ZHENG Y X. Mooring load computation of helicopter based on energy principle[J]. Helicopter Technique, 2011(1): 6-9(in Chinese). [6] 李书, 何忠桓, 徐丽娜. 舰载直升机系留座的布置优化[J]. 航空学报, 2005, 26(6): 715-719. doi: 10.3321/j.issn:1000-6893.2005.06.012LI S, HE Z H, XU L N. Optimization design of the mooring base of the ship-based helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 715-719(in Chinese). doi: 10.3321/j.issn:1000-6893.2005.06.012 [7] BOWLES P O, THOMAS M, GEIGER D, et al. Experimental investigation of passive and active flow control for X2 technology Hub and fuselage drag reduction[C]//Proceedings of American Helicopter Society 72th Annual Forum, 2016: 1-15. [8] LORBER P F, O'NEILL J J, MATALANIS C, et al. Overview of S-97 RAIDERTM scale model tests[C]//Proceedings of American Helicopter Society 72th Annual Forum, 2016: 1-17. [9] LORBER P F, BOWLES P, FOX E, et al. Wind tunnel testing for the SB>1 DEFIANT Joint multi-role technology demonstrator[C]//Proceedings of American Helicopter Society 73th Annual Forum, 2017: 1-18. [10] STEPANOV R, ZHEREKOV V, PAKHOV V, et al. Experimental study of helicopter fuselage drag[J]. Journal of Aircraft, 2016, 53(5): 1343-1360. doi: 10.2514/1.C033819 [11] 杜思亮, 冯衬, 唐正飞. 带前缘小翼的扇翼翼型气动特性数值模拟分析[J]. 北京航空航天大学学报, 2020, 46(5): 870-882. doi: 10.13700/j.bh.1001-5965.2019.0356DU S L, FENG C, TANG Z F. Numerical simulation and analysis of aerodynamic characteristics of fan-wing airfoil with leading edge winglet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 870-882(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0356 [12] 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4): 830-838. doi: 10.13700/j.bh.1001-5965.2019.0462ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830-838(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0462 [13] 赵炜, 黄江流, 周洲, 等. 菱形翼布局太阳能无人机螺旋桨滑流影响研究[J]. 北京航空航天大学学报, 2020, 46(7): 1296-1306. doi: 10.13700/j.bh.1001-5965.2019.0438ZHAO W, HUANG J L, ZHOU Z, et al. Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1296-1306(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0438 [14] 李杰. 长航时无人直升机气动外形设计研究[D]. 南京: 南京航空航天大学, 2014: 52-55.LI J. Design research on aerodynamic shape of long-endurance unmanned helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 52-55(in Chinese). [15] KHIER W. Computational investigation of advanced hub fairing configurations to reduce helicopter drag[C]//40th European Rotorcraft Forum, 2014: 1-10. [16] LEHMANN R, REDDY R, ARMFIELD S. Numerical and experimental investigation of helicopter fuselage aerodynamics[C]//17th Australasian Fluid Mechanics Conference, 2010: 27-30. [17] SCHNEIDER S, MORES S, EDELMANN M, et al. Drag analysis for an economic helicopter[C]//37th European Rotorcraft Forum, 2011: 1-14. [18] BOWLES P O, MATALANIS C, BATTISTI M, et al. Full-configuration CFD analysis of the S-97 RAIDER [C]//VFS 75th Annual Forum & Technology Display, 2019: 1-12. [19] 龙海斌, 吴裕平. 平垂尾大角度气动特性计算与试验结果相关性分析[J]. 直升机技术, 2020, 204(2): 6-10.LONG H B, WU Y P. Correlation analysis between calculation and wind tunnel test results of large-angle aerodynamic characteristics of horizontal tail and vertical tail[J]. Helicopter Technique, 2020, 204(2): 6-10(in Chinese). [20] BRUNELLO D, CLARKE G, REDDY R. Numerical and experimental analysis of a representative adf helicopter fuselage[C]//28th International Congress of the Aeronautical Sciences, 2012: 1-10. [21] 王改娟. 飞艇出库过程中的风载数值模拟及结构有限元分析[D]. 西安: 西安电子科技大学, 2014: 31-40.WANG G J. Wind-induced numerical simulation and structural finite element analysis of an airship in its outbound Process[D]. Xi'an: Xidian University, 2014: 31-40(in Chinese). [22] 陈功, 刘亦菲. 基于风洞试验的飞机侧风环境停放稳定性研究[J]. 民用飞机设计与研究, 2015(4): 26-30.CHEN G, LIU Y F. Analysis of aircraft parking stability in the situation of crosswind by wind tunnel test[J]. Civil Aircraft Design and Research, 2015(4): 26-30(in Chinese). [23] 刘亦鹏, 陈功, 郭传亮, 等. 基于数值风洞技术的民用飞机系留气动载荷计算研究[J]. 民用飞机设计与研究, 2016(2): 10-13.LIU Y P, CHEN G, GUO C L, et al. Calculation research on tie-down aerodynamic load for civil aircraft based on numerical wind tunnel technique[J]. Civil Aircraft Design and Research, 2016(2): 10-13(in Chinese). [24] 航空航天工业部科学技术研究院. 直升机载荷手册[M]. 北京: 航空工业出版社, 1991: 223.Institue of Science and Technology of the Ministry of Aerospace Industry. Helicopter load manual[M]. Beijing: Aviation Industry Press, 1991: 223(in Chinese).