留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸气式高超声速飞行器耦合运动数值模拟

丛戎飞 叶友达 赵忠良

丛戎飞, 叶友达, 赵忠良等 . 吸气式高超声速飞行器耦合运动数值模拟[J]. 北京航空航天大学学报, 2021, 47(9): 1780-1789. doi: 10.13700/j.bh.1001-5965.2020.0313
引用本文: 丛戎飞, 叶友达, 赵忠良等 . 吸气式高超声速飞行器耦合运动数值模拟[J]. 北京航空航天大学学报, 2021, 47(9): 1780-1789. doi: 10.13700/j.bh.1001-5965.2020.0313
CONG Rongfei, YE Youda, ZHAO Zhonglianget al. Numerical simulation of coupling motion of an air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1780-1789. doi: 10.13700/j.bh.1001-5965.2020.0313(in Chinese)
Citation: CONG Rongfei, YE Youda, ZHAO Zhonglianget al. Numerical simulation of coupling motion of an air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1780-1789. doi: 10.13700/j.bh.1001-5965.2020.0313(in Chinese)

吸气式高超声速飞行器耦合运动数值模拟

doi: 10.13700/j.bh.1001-5965.2020.0313
详细信息
    通讯作者:

    叶友达, E-mail: youdaye@sina.com

  • 中图分类号: V212.1;V221.1+5;V221.3

Numerical simulation of coupling motion of an air-breathing hypersonic vehicle

More Information
  • 摘要:

    为了研究吸气式高超声速飞行器在俯仰/滚转两自由度耦合运动下的动稳定性问题,基于气动/运动耦合数值模拟方法并结合理论分析,针对一种类似SR-72构型的吸气式高超声速飞行器开展了进气道通流状态下强迫俯仰/自由滚转耦合运动数值模拟研究。结果表明:强迫俯仰/自由滚转耦合运动下,滚转通道的动力学方程可以简化为有阻尼的Mathieu方程形式,并且可以求得稳定性边界。理论分析表明:滚转通道的动稳定性与俯仰振荡角频率相关,在飞行器滚转振荡固有角频率附近存在2个临界角频率,当俯仰振荡角频率位于2个临界角频率之间时,滚转通道是动不稳定的。在俯仰振荡振幅较小时,数值模拟结果与理论符合较好,但实际的临界角频率与理论分析求解的值有一定偏差;数值模拟结果表明随着俯仰振荡振幅增大,导致滚转发散的角频率范围变得更宽,且向更高频率偏移。

     

  • 图 1  模型几何外形及计算网格

    Figure 1.  Geometric configuration and computational grid of model

    图 2  模型内流道

    Figure 2.  Internal flow path of model

    图 3  钝锥外形及网格拓扑

    Figure 3.  Blunt cone model configuration and topology of computational grid

    图 4  气流角位移曲线

    Figure 4.  Airflow angle displacement curves

    图 5  滚转力矩系数随滚转角变化曲线

    Figure 5.  Variation of rolling moment coefficients with rolling angles

    图 6  滚转静导数随俯仰角变化曲线

    Figure 6.  Variation of rolling static derivatives with pitch angles

    图 7  θ=±10°,γ=40°时上下翼面压力云图及物面流线

    Figure 7.  θ=±10°, γ=40° upper and lower wing surface pressure contours and streamlines

    图 8  滚转动导数随俯仰角变化曲线

    Figure 8.  Variation of rolling dynamic derivatives with pitch angles

    图 9  坐标系定义

    Figure 9.  Reference frame definition

    图 10  ω-λ平面图

    Figure 10.  ω-λ plane graph

    图 11  不同俯仰振荡频率下俯仰角和滚转角随时间的变化(A=5°)

    Figure 11.  Time history of pitch angles and rolling angles at different pitch oscillation frequencies(A=5°)

    图 12  不同俯仰振荡频率下俯仰角和滚转角随时间的变化(A=10°)

    Figure 12.  Time history of pitch angles and rolling angles at different pitch oscillation frequencies(A=10°)

    图 13  不同俯仰振荡频率下的滚转相图

    Figure 13.  Phase diagram of rolling angular velocity to rolling angle at different pitch oscillation frequencies

    图 14  稳定性平面图

    Figure 14.  Stability plane graph

    表  1  数值模拟工况(A=5°)

    Table  1.   Numerical simulation conditions(A=5°)

    编号 f/Hz ω/(rad·s-1) θ0/(°)
    1 0.1 0.628 32 5
    2 0.135 0.848 23 5
    3 0.15 0.942 48 5
    4 0.2 1.256 64 5
    下载: 导出CSV

    表  2  数值模拟工况(A=10°)

    Table  2.   Numerical simulation conditions (A=10°)

    编号 f/Hz ω/(rad·s-1) θ0/(°)
    1 0.1 0.628 32 5
    2 0.15 0.942 48 5
    3 0.175 1.099 56 5
    4 0.2 1.256 64 5
    5 0.25 1.570 8 5
    下载: 导出CSV
  • [1] 占云. 超燃冲压发动机的第一个40年[J]. 飞航导弹, 2002(9): 32-40. doi: 10.3969/j.issn.1009-1319.2002.09.012

    ZHAN Y. Scramjet's first 40 years[J]. Winged Missiles Journal, 2002(9): 32-40(in Chinese). doi: 10.3969/j.issn.1009-1319.2002.09.012
    [2] 王巍巍, 郭琦. 美国典型的高超声速技术研究计划(上)[J]. 燃气涡轮试验与研究, 2013, 26(3): 53-58. doi: 10.3969/j.issn.1672-2620.2013.03.012

    WANG W W, GUO Q. Typical hypersonic technology research programs in America (PartⅠ)[J]. Gas Turbine Experiment and Research, 2013, 26(3): 53-58(in Chinese). doi: 10.3969/j.issn.1672-2620.2013.03.012
    [3] PEEBLES C. Road to Mach 10: Lessons learn from the X-43A flight research program[M]. Reston: AIAA, 2008: 36-78.
    [4] SHELLY F, CHARLES M, KENNETH R, et al. Hyper-X Mach 7 scramjet design, ground test and flight result: AIAA-2005-3322[R]. Reston: AIAA, 2005.
    [5] 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹, 2013(6): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201306005.htm

    ZHEN H P, JIANG C W. Overview of hypersonic technology verification vehicle HTV-2[J]. Winged Missiles Journal, 2013(6): 7-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201306005.htm
    [6] PHILLIPS W H. Effect of rolling on longitudinal and directional stability: NASA TN-1627[R]. Washington, D.C. : NASA, 1948.
    [7] MEHRA R K, CARROLL J V. Bifurcation analysis of aircraft high angle-of-attack flight dynamics: AIAA-1980-1599[R]. Reston: AIAA, 1980.
    [8] KANDIL O A, MENZIES M A. Effective control of simulated wing rock in subsonic flow: AIAA-1997-0831[R]. Reston: AIAA, 1997.
    [9] LIU W, ZHANG H X, ZHAO H Y. Numerical simulation and physical characteristics analysis for slender wing rock[J]. Journal of Aircraft, 2006, 43(3): 858-861. doi: 10.2514/1.18554
    [10] 杨小亮, 刘伟, 赵云飞, 等. 80°后掠三角翼强迫俯仰、自由滚转双自由度耦合运动特性数值研究[J]. 空气动力学学报, 2011, 29(4): 421-426. doi: 10.3969/j.issn.0258-1825.2011.04.004

    YANG X L, LIU W, ZHAO Y F, et al. Numerical investigation of the characteristics of double degree-of-freedom motion of an 80° delta wing in force-pitch and free-roll[J]. Acta Aerodynamica Sinica, 2011, 29(4): 421-426(in Chinese). doi: 10.3969/j.issn.0258-1825.2011.04.004
    [11] 陈坚强, 陈琦, 袁先旭, 等. 方形截面飞行器上仰机动对滚转特性影响的数值模拟[J]. 航空学报, 2016, 37(8): 2565-2573. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608022.htm

    CHEN J Q, CHEN Q, YUAN X X, et al. Numerical simulation of rolling characteristics in nose-up process of square cross section vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2565-2573(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608022.htm
    [12] 陈琦, 陈坚强, 袁先旭, 等. 方形截面弹俯仰振荡对滚转特性的影响[J]. 力学学报, 2016, 48(6): 1281-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201606002.htm

    CHEN Q, CHEN J Q, YUAN X X, et al. Numerical study of the effect of forced pitching oscillation on rolling characteristics of vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1281-1289(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201606002.htm
    [13] TARPLEY C, LEWIS M. Stability derivatives for engine integrated waveriders with viscous and pitch effects[C]//32nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1994: 1-13.
    [14] TARPLEY C, LEWIS M J. Stability derivatives for a hypersonic caret-wing waverider[J]. Journal of Aircraft, 1995, 32(4): 795-803. doi: 10.2514/3.46793
    [15] RUDD L, PINES D, TARPLEY C. Dynamic stability of mission-oriented hypersonic waveriders[C]//37th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999: 1-12.
    [16] BAUMANN E, BAHM C, STROVERS B, et al. The X-43A six degree of freedom Monte Carlo analysis[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1-38.
    [17] KENNELL C, NEELY A, O'BYRNE S, et al. Measurement of vehicle stability coefficients in hypersonic wind tunnels[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015: 1-12.
    [18] YE Y D, ZHAO Z L, TIAN H, et al. The stability analysis of rolling motion of hypersonic vehicles and its validations[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(12): 2194-2204. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JGXG201412003
    [19] YE Y D, TIAN H, ZHANG X F. The stability of rolling motion of hypersonic vehicles with slender configuration under pitching maneuvering[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(6): 1-9. http://search.cnki.net/down/default.aspx?filename=JGXG201506008&dbcode=CJFD&year=2015&dflag=pdfdown
    [20] 李乾, 赵忠良, 叶友达, 等. 一种临近空间飞行器静/动态气动特性研究[J]. 空气动力学学报, 2017, 35(4): 504-509. doi: 10.7638/kqdlxxb-2016.0116

    LI Q, ZHAO Z L, YE Y D, et al. Numerical and experimental investigation on aerodynamic characteristics for one typical near space vehicle[J]. Acta Aerodynamica Sinica, 2017, 35(4): 504-509(in Chinese). doi: 10.7638/kqdlxxb-2016.0116
    [21] 李乾, 赵忠良, 王晓冰, 等. 一种近空间高超声速飞行器滚转稳定性研究[J]. 航空学报, 2018, 39(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201803001.htm

    LI Q, ZHAO Z L, WANG X B, et al. Rolling stability research of a near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 1-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201803001.htm
    [22] 何垒, 姚跃民, 檀望春, 等. 高超声速飞行器偏离稳定判据研究[J]. 弹箭与制导学报, 2018, 38(4): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201804017.htm

    HE L, YAO Y M, TAN W C, at al. The research on departure stability criteria for hypersonic vehicle[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(4): 69-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201804017.htm
    [23] 刘绪. 高超声速内外流一体化飞行器动态特性研究[D]. 长沙: 国防科学技术大学, 2011: 71-78.

    LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha: National University of Defense Technology, 2011: 71-78(in Chinese).
    [24] 刘绪, 刘伟, 周云龙, 等. 吸气式内外流一体化飞行器动导数数值模拟[J]. 空气动力学学报, 2015, 33(2): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201502001.htm

    LIU X, LIU W, ZHOU Y L, et al. Numerical simulation of dynamic derivatives for air-breathing hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2): 147-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201502001.htm
    [25] 陈琦, 谢昱飞, 袁先旭, 等. 内外流一体化飞行器动导数数值预测[J]. 计算物理, 2018, 35(5): 563-570. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201805008.htm

    CHEN Q, XIE Y F, YUAN X X, at al. Numerical investigation of dynamic derivative forairframe/propulsion integrative vehicles[J]. Chinese Journal of Computational Physics, 2018, 35(5): 563-570(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201805008.htm
    [26] 赵忠良, 杨晓娟, 蒋卫民, 等. 高超声速飞行器通流模拟方法与风洞验证技术[J]. 航空学报, 2014, 35(11): 2932-2938. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411004.htm

    ZHAO Z L, YANG X J, JIANG W M, et al. Through-flow simulation method and wind tunnel validation technique for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2932-2938(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411004.htm
    [27] CHEN J Z, ZHAO Z L, WANG X B, et al. Research on dynamic derivatives test technique for integrative hypersonic vehicle with internal and external flow in wind tunnel[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 1-7.
    [28] 姚源, 陈萱. 美国发SR-72高超声速飞机概念[J]. 中国航天, 2013(12): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT201312017.htm

    YAO Y, CHEN X. America released the SR-72 hypersonic aircraft concept[J]. Aerospace China, 2013(12): 39-41(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT201312017.htm
    [29] 丛戎飞, 叶友达, 赵忠良. 吸气式高超声速飞行器俯仰/滚转耦合运动特性[J]. 航空学报, 2020, 41(4): 123588. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202004008.htm

    CONG R F, YE Y D, ZHAO Z L. Characteristics of air-breathing hypersonic vehicle in force-pitch and free-roll coupling motion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123588(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202004008.htm
    [30] 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6): 977-983. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206003.htm

    DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 977-983(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206003.htm
    [31] 蒋增辉, 宋威, 陈农. 非旋转钝锥高超声速双平面拍摄风洞自由飞试验[J]. 力学学报, 2015, 47(3): 406-413. doi: 10.7638/kqdlxxb-2013.0065

    JIANG Z H, SONG W, CHEN N. Hypersonic wind tunnel free-flight test with biplanar optical system on the non-spinning blunt cone[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 406-413(in Chinese). doi: 10.7638/kqdlxxb-2013.0065
    [32] 宋威, 赵小见, 鲁伟, 等. 高超声速边界层转捩对旋转钝锥自由飞运动的影响[J]. 航空学报, 2017, 38(11): 121295. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201711008.htm

    SONG W, ZHAO X J, LU W, et al. Effect of boundary layer transition on free flight motion of hypersonic spinning blunt cone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121295(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201711008.htm
    [33] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 16-32.

    FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005: 16-32(in Chinese).
    [34] 陶明德. 有阻尼Mathieu方程的渐近解[J]. 应用数学和力学, 1992, 13(2): 187-191. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX199202010.htm

    TAO M D. Asymptotic solutions of mathieu equation with damping[J]. Applied Mathematics and Mechanics, 1992, 13(2): 187-191(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX199202010.htm
    [35] 戎海武, 王向东, 徐伟, 等. Mathieu方程的周期解与稳定性[J]. 佛山科学技术学院学报(自然科学版), 2002, 20(3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-FSDX200203000.htm

    RONG H W, WANG X D, XU W, et al. Periodic solution and transition curve of Mathieu equation[J]. Journal of Foshan University(Natural Science Edition), 2002, 20(3): 1-4(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FSDX200203000.htm
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  38
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 录用日期:  2020-09-09
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答