留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传感器安装对平板气动热测量精度的影响

罗凯 汪球 栗继伟 李进平 赵伟

罗凯, 汪球, 栗继伟, 等 . 传感器安装对平板气动热测量精度的影响[J]. 北京航空航天大学学报, 2021, 47(9): 1790-1798. doi: 10.13700/j.bh.1001-5965.2020.0315
引用本文: 罗凯, 汪球, 栗继伟, 等 . 传感器安装对平板气动热测量精度的影响[J]. 北京航空航天大学学报, 2021, 47(9): 1790-1798. doi: 10.13700/j.bh.1001-5965.2020.0315
LUO Kai, WANG Qiu, LI Jiwei, et al. Influence of sensor installation on accuracy of aerodynamic heating measurement on flat plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1790-1798. doi: 10.13700/j.bh.1001-5965.2020.0315(in Chinese)
Citation: LUO Kai, WANG Qiu, LI Jiwei, et al. Influence of sensor installation on accuracy of aerodynamic heating measurement on flat plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1790-1798. doi: 10.13700/j.bh.1001-5965.2020.0315(in Chinese)

传感器安装对平板气动热测量精度的影响

doi: 10.13700/j.bh.1001-5965.2020.0315
基金项目: 

国家自然科学基金 11972331

国家自然科学基金 11672308

详细信息
    通讯作者:

    汪球, E-mail: wangqiu@imech.ac.cn

  • 中图分类号: V411.3

Influence of sensor installation on accuracy of aerodynamic heating measurement on flat plate

Funds: 

National Natural Science Foundation of China 11972331

National Natural Science Foundation of China 11672308

More Information
  • 摘要:

    对高超声速飞行器来说,气动热的准确预测是其合理选择防热材料及热结构设计的重要依据,但目前在激波风洞试验中气动热的高精度测量仍较为困难,热流的测量精度受到诸多非理想因素的影响,但传感器安装对热流测量精度的影响却鲜见研究。选取平板模型来研究传感器非理想安装对气动热测量精度的影响,针对不同的传感器安装偏差(凸出或凹入模型表面0.1~0.5 mm),分析不同雷诺数下传感器安装对气动热测量精度的影响规律及机理。研究结果表明:传感器安装对气动热测量精度有较大影响,凸出安装会导致热流测量结果偏大,而凹入安装则会导致测量结果偏小,热流偏差会随着安装偏差的增大而增大,且高来流雷诺数下传感器非理想安装所引起的热流误差更大;以边界层当地厚度对凹凸程度无量纲化,非理想安装带来的测量偏差只与该无量纲参数相关。研究结果能够为气动热测量的实验方案设计及测量误差分析提供一定的理论指导。

     

  • 图 1  计算模型示意图

    Figure 1.  Schematic diagram of computing model

    图 2  计算网格

    Figure 2.  Computing grids

    图 3  不同网格分辨率下的壁面热流分布

    Figure 3.  Heat flux distribution on wall surface with different grid resolutions

    图 4  Case 2工况下qw/q0随凸凹距离的变化规律

    Figure 4.  Relationship between qw/q0 and recessed or protruding distance in Case 2

    图 5  Case 2工况下传感器附近的温度分布与流线图

    Figure 5.  Streamline and temperature distribution around sensor in Case 2

    图 6  Case 2工况下传感器安装时表面热流分布

    Figure 6.  Surface heat flux distribution during sensor installation in Case 2

    图 7  Case 2工况下传感器中心线处焓值分布

    Figure 7.  Enthalpy distribution on sensor's center line in Case 2

    图 8  凸出安装时传感器在各工况下的无量纲热流

    Figure 8.  Dimensionless heat flow of sensor under different working conditions during protruding installation

    图 9  凸出安装h=0.5 mm时传感器中心线焓值分布

    Figure 9.  Enthalpy distribution on center line of sensor at h=0.5 mm

    图 10  凸出安装h=0.5 mm时传感器附近的温度分布与流线图

    Figure 10.  Streamline and temperature distribution around sensor with protruding installation at h=0.5 mm

    图 11  雷诺数对qw/q0的影响(传感器直径为1.4 mm)

    Figure 11.  Influence of Reynolds number on qw/q0 with (sensor diameter 1.4 mm)

    图 12  Case 3工况下传感器直径对热流测量的影响

    Figure 12.  Effect of sensor diameter on heat flux measurement in Case 3

    表  1  不同工况下的来流参数

    Table  1.   Incoming flow parameters under different working conditions

    工况 p/Pa T/K Re/(106 m-1) h/mm D/mm
    Case 1 390 324 0.5 1.4
    Case 2 394 221 0.9 1.4
    Case 3 575 236.5 1.2 0, 0.1, 0.2, 0.3, 0.5 1, 1.4, 1.7, 2
    Case 4 3 833.3 236.5 8 1.4
    Case 5 5 750 236.5 12 1.4
    下载: 导出CSV

    表  2  平板热流自相似解与CFD的对比

    Table  2.   Comparison of theoretical and simulated plate heat flux values

    工况 q0/(104 W·m-2) 偏差/%
    CFD 理论值
    Case 1 2.36 2.45 3.67
    Case 2 1.59 1.65 3.64
    Case 3 2.04 2.09 2.39
    Case 4 5.02 5.23 4.02
    Case 5 6.04 6.40 5.63
    下载: 导出CSV
  • [1] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: AIAA, 2006.
    [2] WANG Q, LI J P, ZHAO W, et al. Influence of thermal sensor installation on measuring accuracy at stagnation points[J]. Journal of Thermophysics & Heat Transfer, 2016, 31(2): 1-6. http://dspace.imech.ac.cn/bitstream/311007/60912/1/JouArt-2017-104.pdf
    [3] COBLISH J, COULTER S, NORRIS J. Aerothermal measurement improvements using coaxial thermocouples at AEDC hypervelocity wind tunnel No. 9[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2013: 1467.
    [4] CHADWICK K. Stagnation heat transfer measurement techniques in hypersonic shock tunnel flows over spherical segments[C]//AIAA Thermophysics Conference. Reston: AIAA, 2008: 2493.
    [5] VAN DRIEST E R. Investigation of laminar boundary layer in compressible fluids using the Crocco method[J]. Technical Report Archive & Image Library, 1952, 10(1): 15-31. http://digital.library.unt.edu/ark:/67531/metadc56237/m2/1/high_res_d/19930083425.pdf
    [6] FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 2012, 25(2): 73-85. http://ci.nii.ac.jp/naid/10004636778
    [7] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501025.htm

    PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 325-345(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501025.htm
    [8] GUELHAM A, ESSER B. A study on heat flux measurements in high enthalpy flows[C]//AIAA Thermophysics Conference. Reston: AIAA, 2013: 3011.
    [9] 曾磊, 桂业伟, 王安龄, 等. 激波风洞驻点热流测量误差机理及其不确定度研究[J]. 实验流体力学, 2015, 29(5): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201505003.htm

    ZENG L, GUI Y W, WANG A L, et al. Study on error mechanism and uncertainty assessment of heat flux measurement in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 15-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201505003.htm
    [10] 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006, 24(1): 125-130. doi: 10.3969/j.issn.0258-1825.2006.01.023

    YAN C, YU J J, LI J Z. Scheme effect and grid dependency in CFD computations of heat transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130(in Chinese). doi: 10.3969/j.issn.0258-1825.2006.01.023
    [11] KANDULA M, HADDAD G F, CHEN R H. Three-dimensional thermal boundary layer corrections for circular heat flux gauges mounted in a flat plate with a surface temperature discontinuity[J]. International Journal of Heat & Mass Transfer, 2007, 50(3): 713-722. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020416015921.html
    [12] WANG Q, LI J P, ZHAO W, et al. Comparative study on aerodynamic heating under perfect and nonequilibrium hypersonic flows[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(2): 77-83. http://159.226.230.4/bitstream/311007/58639/1/a2016-168.pdf
    [13] 秦峰, 何川, 曾磊, 等. 驻点热流测量试验技术研究[J]. 西南交通大学学报, 2013, 48(6): 1072-1077. doi: 10.3969/j.issn.0258-2724.2013.06.016

    QIN F, HE C, ZENG L, et al. Experimental research of heat-transfer measurements on stagnation points[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1072-1077(in Chinese). doi: 10.3969/j.issn.0258-2724.2013.06.016
    [14] 傅德薰. 计算空气动力学[M]. 北京: 宇航出版社, 2006.

    FU D X. Computational aerodynamics[M]. Beijing: China Asteonautic Publishing House, 2006(in Chinese).
    [15] KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows: I. AUSMPW+scheme[J]. Journal of Computational Physics, 2001, 174(1): 38-80. doi: 10.1006/jcph.2001.6873
    [16] JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. doi: 10.2514/3.9724
    [17] 郭永怀. 边界层理论讲义[M]. 北京: 中国科学技术大学出版社, 2008.

    GUO Y H. Lecture notes on boundary layer theory[M]. BeiJing: University of Science and Technology of China Press, 2008(in Chinese).
    [18] 李素循. 激波与边界层主导的复杂流动[M]. 北京: 科学出版社, 2007.

    LI S X. Complex flow dominated by shock wave and boundary layer[M]. Beijing: Science Press, 2007(in Chinese).
    [19] LI X D, HU Z M, JIANG Z L. Numerical investigation on the thermal protection mechanism for blunt body with forward-facing cavity[J]. Science China Technological Sciences, 2016, 59(7): 1120-1129. doi: 10.1007/s11431-016-6015-4
    [20] KUMAR C S, REDDY K P J. Experimental investigation of aerodynamic interference heat transfer around a protuberance on a flat plate subjected to hypersonic flow[C]//International Symposium on Shock Waves, 2012: 471-476.
    [21] 吴云鹏. 壁面温度控制对平板边界层影响的数值研究[J]. 空气动力学学报, 2016, 34(5): 674-679. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605020.htm

    WU Y P. Numerical simulation of wall temperature control influence on flat plate boundary layer[J]. Acta Aerodynamica Sinica, 2016, 34(5): 674-679(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605020.htm
    [22] 李俊红, 张亮, 俞继军, 等. 高超声速可压缩流中粗糙壁热流研究[J]. 计算物理, 2017, 34(2): 165-174. doi: 10.3969/j.issn.1001-246X.2017.02.006

    LI J H, ZHANG L, YU J J, et al. Study of rough wall heat flux in hypersonic turbulent flow[J]. Chinese Journal of Computational Physics, 2017, 34(2): 165-174(in Chinese). doi: 10.3969/j.issn.1001-246X.2017.02.006
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  72
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 录用日期:  2020-10-23
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答