留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于杂波量测集约束的改进MS-MeMBer滤波器

陆小科 张志国 孙进平 孙伟

陆小科, 张志国, 孙进平, 等 . 基于杂波量测集约束的改进MS-MeMBer滤波器[J]. 北京航空航天大学学报, 2021, 47(9): 1748-1755. doi: 10.13700/j.bh.1001-5965.2020.0317
引用本文: 陆小科, 张志国, 孙进平, 等 . 基于杂波量测集约束的改进MS-MeMBer滤波器[J]. 北京航空航天大学学报, 2021, 47(9): 1748-1755. doi: 10.13700/j.bh.1001-5965.2020.0317
LU Xiaoke, ZHANG Zhiguo, SUN Jinping, et al. An improved multi-sensor MeMBer filter based on clutter measurement set constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1748-1755. doi: 10.13700/j.bh.1001-5965.2020.0317(in Chinese)
Citation: LU Xiaoke, ZHANG Zhiguo, SUN Jinping, et al. An improved multi-sensor MeMBer filter based on clutter measurement set constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1748-1755. doi: 10.13700/j.bh.1001-5965.2020.0317(in Chinese)

基于杂波量测集约束的改进MS-MeMBer滤波器

doi: 10.13700/j.bh.1001-5965.2020.0317
基金项目: 

国家自然科学基金 61471019

详细信息
    通讯作者:

    孙进平, E-mail: sunjinping@buaa.edu.cn

  • 中图分类号: TN953

An improved multi-sensor MeMBer filter based on clutter measurement set constraint

Funds: 

National Natural Science Foundation of China 61471019

More Information
  • 摘要:

    针对高杂波密度场景下,传统多传感器多目标多伯努利(MS-MeMBer)滤波器存在的量测划分假设质量下降、势估计结果出现偏差等问题,提出了一种基于杂波量测集约束的改进MS-MeMBer滤波器。首先,通过将杂波量测集的影响引入到更新过程中,优化了目标量测集的权重,并给出了杂波场景下的单目标多传感器似然函数。然后,通过两步贪婪划分机制,得到了改进的多传感器量测划分假设。通过仿真将所提方法与传统MS-MeMBer滤波器进行了比较,实验结果表明:在高杂波密度场景下,改进MS-MeMBer滤波器具有更优的多目标跟踪性能。

     

  • 图 1  第1步划分

    Figure 1.  The first partitioning step

    图 2  第2步划分

    Figure 2.  The second partitioning step

    图 3  目标真实运动轨迹

    Figure 3.  True movement trajectories of target

    图 4  OSPA距离比较(λk=10)

    Figure 4.  OSPA distance comparison(λk=10)

    图 5  势估计结果(λk=10)

    Figure 5.  Estimated cardinality(λk=10)

    图 6  OSPA距离比较(λk=50)

    Figure 6.  OSPA distance comparison(λk=50)

    图 7  OSPA距离比较(λk=100)

    Figure 7.  OSPA distance comparison(λk=100)

    图 8  势估计结果(λk=50)

    Figure 8.  Estimated cardinality(λk=50)

    图 9  势估计结果(λk=100)

    Figure 9.  Estimated cardinality(λk=100)

    图 10  平均单步OSPA距离

    Figure 10.  Average single-step OSPA distance

    表  1  目标真实运动情况

    Table  1.   True movement of targets

    初始状态 存活时间/s
    [-100 m,-10 m/s,1 800 m,-10 m/s] 1~70
    [100 m,10 m/s,1 800 m,-10 m/s] 1~70
    [-100 m,-10 m/s,200 m,10 m/s] 30~100
    [100 m,10 m/s,200 m,10 m/s] 30~100
    下载: 导出CSV

    表  2  平均单步运行时间

    Table  2.   Average single-step running time

    杂波密度λk 平均单步运行时间/ms
    改进MS-MeMBer滤波器 传统MS-MeMBer滤波器
    10 23.54 23.22
    50 28.85 28.09
    100 32.46 33.10
    下载: 导出CSV
  • [1] REID D. An algorithm for tracking multiple targets[J]. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854. doi: 10.1109/TAC.1979.1102177
    [2] KIRUBARAJAN T, BAR-SHALOM Y. Probabilistic data association techniques for target tracking in clutter[J]. Proceedings of the IEEE, 2004, 92(3): 536-557. doi: 10.1109/JPROC.2003.823149
    [3] MAHLER R. Statistical multisource-multitarget information fusion[M]. Norwood: Artech House Press, 2007.
    [4] 王颖. 一种鲁棒的多目标概率假设密度算法[J]. 火力与指挥控制, 2018, 43(8): 143-146. doi: 10.3969/j.issn.1002-0640.2018.08.030

    WANG Y. A robust multi-target probability hypothesis density algorithm[J]. Fire Control & Command Control, 2018, 43(8): 143-146(in Chinese). doi: 10.3969/j.issn.1002-0640.2018.08.030
    [5] VO B T, VOB N, CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567. doi: 10.1109/TSP.2007.894241
    [6] VO B T, VO B N, CANTONI A. On multi-Bernoulli approximations to the Bayes multi-target filter[C]//Proceeding of the International Conference on Information Fusion, 2007: 1-10.
    [7] 陈树新, 洪磊, 吴昊, 等. 学生t混合势均衡多目标多伯努利滤波器[J]. 电子与信息学报, 2019, 41(10): 2457-2463. doi: 10.11999/JEIT181121

    CHEN S X, HONG L, WU H, et al. Student's t mixture cardinality balanced multi-target multi-Bernoulli filter[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2457-2463(in Chinese). doi: 10.11999/JEIT181121
    [8] 王佰录, 易伟, 李溯琪, 等. 分布式多目标伯努利滤波器的网络共识技术[J]. 信号处理, 2018, 34(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201801001.htm

    WANG B L, YI W, LI S Q, et al. Consensus for distributed multi-Bernoulli filter[J]. Journal of Signal Processing, 2018, 34(1): 1-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201801001.htm
    [9] 彭华甫, 黄高明, 田威. 随机有限集理论及其在多目标跟踪中的应用和实现[J]. 控制与决策, 2019, 34(2): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201902001.htm

    PENG H F, HUANG G M, TIAN W. Random finite set: Theory, application and implementation for multi-target tracking[J]. Control and Decision, 2019, 34(2): 225-232(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201902001.htm
    [10] 冯新喜, 迟珞珈, 王泉, 等. 基于箱粒子滤波的混合标签多伯努利跟踪算法[J]. 控制与决策, 2020, 35(2): 507-512. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202002030.htm

    FENG X X, CHI L J, WANG Q, et al. A hybrid labeled multi-Bernoulli tracking algorithm based on box particle filter[J]. Control and Decision, 2020, 35(2): 507-512(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202002030.htm
    [11] MAHLER R. The multisensor PHD filter: I. General solution via multitarget calculus[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7336: 73360E-1-73360E-12. doi: 10.1117/12.818024
    [12] MAHLER R. Approximate multisensor CPHD and PHD filters[C]//Proceedings of the International Conference on Information Fusion, 2010: 1-8.
    [13] NANNURU S, BLOUIN S, COATES M, et al. Multisensor CPHD filter[J]. IEEE Transactions on Aerospace and Electronics Systems, 2016, 52(4): 1834-1854. doi: 10.1109/TAES.2016.150265
    [14] SAUCAN A A, COATES M, RABBAT M. A multi-sensor multi-Bernoulli filter[EB/OL]. (2016-09-16)[2020-07-01]. https://arxiv.org/abs/1609.05108.
    [15] SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457. doi: 10.1109/TSP.2008.920469
    [16] RISTIC B, VO B N, CLARK D. Performance evaluation of multi-target tracking using the OSPA metric[C]//Proceedings of the International Conference on Information Fusion, 2010: 1-7.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  36
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 录用日期:  2020-11-06
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答