留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于R-D SSD模型航空发动机安装工位检测算法

陈科山 郝宇 何泓波 李坤龙

陈科山, 郝宇, 何泓波, 等 . 基于R-D SSD模型航空发动机安装工位检测算法[J]. 北京航空航天大学学报, 2021, 47(4): 682-689. doi: 10.13700/j.bh.1001-5965.2020.0321
引用本文: 陈科山, 郝宇, 何泓波, 等 . 基于R-D SSD模型航空发动机安装工位检测算法[J]. 北京航空航天大学学报, 2021, 47(4): 682-689. doi: 10.13700/j.bh.1001-5965.2020.0321
CHEN Keshan, HAO Yu, HE Hongbo, et al. Detection algorithm of aeroengine installation station based on R-D SSD model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 682-689. doi: 10.13700/j.bh.1001-5965.2020.0321(in Chinese)
Citation: CHEN Keshan, HAO Yu, HE Hongbo, et al. Detection algorithm of aeroengine installation station based on R-D SSD model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 682-689. doi: 10.13700/j.bh.1001-5965.2020.0321(in Chinese)

基于R-D SSD模型航空发动机安装工位检测算法

doi: 10.13700/j.bh.1001-5965.2020.0321
基金项目: 

国家自然科学基金 51735009

详细信息
    作者简介:

    陈科山  男, 博士, 教授, 硕士生导师。主要研究方向: 机器人设计与控制技术、计算机视觉与图像识别技术、智能交通与新能源技术等

    郝宇  男, 硕士研究生。主要研究方向: 计算机视觉与图像识别技术

    通讯作者:

    陈科山. E-mail: kshchen@bjtu.edu.cn

  • 中图分类号: V239;TP181

Detection algorithm of aeroengine installation station based on R-D SSD model

Funds: 

National Natural Science Foundation of China 51735009

More Information
  • 摘要:

    为解决航空发动机在安装过程中大多实行人工安装、定位不精确等问题,在研究其自动化安装方法中,针对航空发动机安装工位的检测需求,提出了一种残差网络与膨胀卷积相融合的SSD改进算法(R-D SSD)。将经典SSD模型的主干网络VGG16替换为残差网络ResNet-101,并增加其输出特征图上的预选框数量,解决了原始算法对底层特征抓取能力不足的问题,进而弥补了对小目标检测效果较差的缺陷;利用膨胀卷积扩大网络的感受野,获取足够的安装工位边缘特征细节信息,在不改变网络结构的同时,保证了模型良好的实时性和对目标的检测精度。实验表明:对于小目标数据集和整个数据集,R-D SSD算法的平均检测精度较原始算法分别提高了8.6%和4.0%,可以满足航空发动机安装时平均检测精度不低于85%的要求。

     

  • 图 1  SSD安装工位检测效果

    Figure 1.  SSD detection effect of installation station

    图 2  R-D SSD网络结构

    Figure 2.  R-D SSD network structure

    图 3  残差学习单元

    Figure 3.  Residual learning unit

    图 4  增加预选框数量

    Figure 4.  Increasing the number of preselected boxes

    图 5  膨胀卷积

    Figure 5.  Dilation convolution

    图 6  小目标检测效果对比

    Figure 6.  Comparison of small target detection effect

    图 7  正常大小目标检测效果对比

    Figure 7.  Comparison of normal-size target detection effect

    图 8  混淆矩阵

    Figure 8.  Confusion matrix

    表  1  实验数据集划分

    Table  1.   Experimental dataset partition

    类别 训练集/张 占比/% 测试集/张 占比/%
    前安装工位 2 069 41 236 5
    后安装工位 1 881 38 192 4
    前安装工位+后安装工位 550 11 79 1
    下载: 导出CSV

    表  2  小目标检测精度对比

    Table  2.   Comparison of small target detection accuracy

    检测算法 检测对象 AP/% mAP/%
    SSD 前安装工位 67.2 71.9
    后安装工位 76.6
    R-D SSD 前安装工位 77.9 80.5
    后安装工位 83.1
    下载: 导出CSV

    表  3  正常大小目标检测精度对比

    Table  3.   Comparison of normal-size target detection accuracy

    检测算法 mAP/%
    SSD 86.7
    R-D SSD 88.1
    下载: 导出CSV

    表  4  不同检测算法性能比较

    Table  4.   Comparison of performance among different detection algorithms

    检测算法 主干网络 mAP/% 检测速度/(帧·s-1)
    Faster R-CNN ResNet50 88.5 8.2
    YOLOv3 Darknet-53 83.2 51.0
    SSD VGG16 82.9 52.6
    R-D SSD ResNet-101 86.9 40.5
    下载: 导出CSV
  • [1] GULA P, ULMA D, ZUREK K, et al. Challenges of turboprop engine installation on small aircraft[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(7): 938-948. doi: 10.1108/AEAT-09-2017-0198
    [2] 赵哲. 航空发动机数控安装架车的研制[D]. 大连: 大连理工大学, 2014: 14-20.

    ZHAO Z. Research on NC installation vehicle for aero-engine[D]. Dalian: Dalian University of Technology, 2014: 14-20(in Chinese).
    [3] GAO H, LEI H, ZHAO Z, et al. The large aero-engine NC installation method and its multi-axial position adjustment platform design[C]//2013 IEEE International Symposium on Assembly and Manufacturing. Piscataway: IEEE Press, 2013: 270-273.
    [4] 李洋, 谢曦鹏. 飞机发动机数字化对接安装工艺研究[J]. 装备制造技术, 2013(9): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201309035.htm

    LI Y, XIE X P. Research on aeroengine digital assembly technology[J]. Equipment Manufacturing Technology, 2013(9): 90-92(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201309035.htm
    [5] 高航, 宋强, 刘国, 等. 航空发动机整机数控安装多轴调姿方法及其应用[J]. 航空制造技术, 2017, 60(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201711005.htm

    GAO H, SONG Q, LIU G, et al. Method and application for aeroengine overall unit NC installation with multi-axis attitude adjustment[J]. Aeronautical Manufacturing Technology, 2017, 60(11): 16-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201711005.htm
    [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [7] 陈映雪, 丁文锐, 李红光, 等. 基于视频帧间运动估计的无人机图像车辆检测[J]. 北京航空航天大学学报, 2020, 46(3): 634-642. doi: 10.13700/j.bh.1001-5965.2019.0279

    CHEN Y X, DING W R, LI H G, et al. Vehicle detection in UAV image based on video interframe motion estimation[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2020, 46(3): 634-642(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0279
    [8] 李慧. 飞机蒙皮图像的深度特征学习与损伤监测[D]. 北京: 北京邮电大学, 2019: 35-36.

    LI H. High-level feature learning and damage monitoring of aircraft surface images[D]. Beijing: Beijing University of Posts and Telecommunications, 2019: 35-36(in Chinese).
    [9] LIU S, DENG W. Very deep convolutional neural network based image classification using small training sample size[C]//3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur: Institute of Electrical and Electronics Engineers Inc., 2015: 730-734.
    [10] 黄豪杰, 段先华, 黄欣辰. 基于深度学习水果检测的研究与改进[J]. 计算机工程与应用, 2020, 56(3): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202003020.htm

    HUANG H J, DUAN X H, HUANG X C. Research and improvement of fruits detection based on deep learning[J]. Computer Engineering and Applications, 2020, 56(3): 127-133(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202003020.htm
    [11] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [12] TIAN Y L, ZHANG Q S, REN Z L, et al. Multi-scale dilated convolution network based depth estimation in intelligent transportation systems[J]. IEEE Access, 2019, 7: 185179-185188. doi: 10.1109/ACCESS.2019.2960520
    [13] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]//International Conference on Machine Learning, 2015, 1: 448-456.
    [14] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. http://ieeexplore.ieee.org/document/7485869
    [15] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  48
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 录用日期:  2020-09-04
  • 网络出版日期:  2021-04-20

目录

    /

    返回文章
    返回
    常见问答