留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的插值Coons曲面孔位修正方法

孙新月 田威 胡俊山 廖文和

孙新月, 田威, 胡俊山, 等 . 基于遗传算法的插值Coons曲面孔位修正方法[J]. 北京航空航天大学学报, 2021, 47(9): 1814-1822. doi: 10.13700/j.bh.1001-5965.2020.0324
引用本文: 孙新月, 田威, 胡俊山, 等 . 基于遗传算法的插值Coons曲面孔位修正方法[J]. 北京航空航天大学学报, 2021, 47(9): 1814-1822. doi: 10.13700/j.bh.1001-5965.2020.0324
SUN Xinyue, TIAN Wei, HU Junshan, et al. A hole position correction method of interpolation Coons surface based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1814-1822. doi: 10.13700/j.bh.1001-5965.2020.0324(in Chinese)
Citation: SUN Xinyue, TIAN Wei, HU Junshan, et al. A hole position correction method of interpolation Coons surface based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1814-1822. doi: 10.13700/j.bh.1001-5965.2020.0324(in Chinese)

基于遗传算法的插值Coons曲面孔位修正方法

doi: 10.13700/j.bh.1001-5965.2020.0324
基金项目: 

国家科技重大专项 2018ZX04006001

详细信息
    通讯作者:

    田威, E-mail: tw_nj@nuaa.edu.cn

  • 中图分类号: V262.4

A hole position correction method of interpolation Coons surface based on genetic algorithm

Funds: 

National Science and Technology Major Project of China 2018ZX04006001

More Information
  • 摘要:

    在机器人自动制孔过程中,制孔点位信息通常从待制孔工件工艺数模上获取,而待制孔工件安装过程中会出现位置偏移和变形,由工艺数模得到的点位信息无法直接满足孔位精度要求。为了保证自动制孔的孔位精度,提出了一种基于遗传算法的插值Coons曲面孔位修正方法。利用制孔区域边角基准孔建立双线性Coons误差曲面模型,通过模型计算出待制孔的误差补偿向量,并补偿至理论制孔位置。针对误差曲面切矢模长无法确定的情况,利用制孔区域内的基准孔构建遗传算法模型,计算出切矢模长最优值,使拟合的误差曲面更符合实际制孔区域曲面。通过试验对算法的有效性和精度进行验证,结果表明:采用基于遗传算法的插值Coons曲面孔位修正方法,可以使孔位误差得到有效的补偿。补偿后的平均孔位误差仅为0.195 6 mm,与传统的插值曲面方法相比,孔位误差降低了5%~10%。

     

  • 图 1  理论曲面和实际曲面偏差

    Figure 1.  Deviation of theoretical surface and actual surface

    图 2  双线性Coons曲面拟合过程

    Figure 2.  Process diagram of bilinear Coons surface fitting

    图 3  单位切矢计算示意图

    Figure 3.  Schematic diagram of unit tangent vector calculation

    图 4  切矢模长对曲线丰满程度的影响

    Figure 4.  Influence of tangent vector length on the fullness of curves

    图 5  遗传算法求解切矢模长流程

    Figure 5.  Genetic algorithm for computing the tangent vector modulus length

    图 6  试验平台

    Figure 6.  Experimental platform

    图 7  试验工件孔位分布

    Figure 7.  Distribution map of hole positions of test pieces

    图 8  孔位仿真

    Figure 8.  Hole position simulation

    图 9  3种孔位修正方法孔位精度对比图

    Figure 9.  Comparison of hole position accuracy of three hole position correction methods

    图 10  基准孔位置对孔位误差的影响

    Figure 10.  Effect of reference hole position on hole position error

    图 11  基准孔数量对孔位误差的影响

    Figure 11.  Effect of the number of reference holes on hole position error

    表  1  边角基准孔理论坐标及法矢

    Table  1.   Theoretical coordinate and normal vector of corner reference holes

    基准孔 (x, y, z) /mm 法矢
    A1 (44.721, 89.443, 20) (0.447 2, 0.894 4, 0)
    B1 (76.022, 64.967, 20) (0.760 2, 0.649 7, 0)
    C1 (76.022, 64.967, -20) (0.760 2, 0.649 7, 0)
    D1 (44.721, 89.443, -20) (0.447 2, 0.894 4, 0)
    下载: 导出CSV

    表  2  边角基准孔孔位偏差

    Table  2.   Position deviation of corner reference holes

    基准孔 Δx /mm Δy /mm Δz /mm
    A1 -1.702 0.517 -0.049
    B1 -0.691 0.858 -0.203
    C1 -0.624 0.809 -0.402
    D1 -1.82 0.712 -0.161
    下载: 导出CSV

    表  3  待制孔孔位偏差

    Table  3.   Position deviation of hole to be drilled

    孔号 Δx /mm Δy /mm Δz/mm
    1 -1.518 0.702 -0.098
    2 -1.509 0.694 -0.148
    3 -1.65 0.832 -0.259
    4 -1.528 0.796 -0.233
    5 -1.318 0.754 -0.133
    6 -1.207 0.716 -0.134
    7 -1.235 0.941 -0.056
    8 -1.365 1.021 -0.488
    9 -1.276 0.806 -0.282
    10 -1.151 0.948 -0.201
    11 -0.732 0.674 0.064
    12 -0.874 0.793 -0.152
    13 -0.87 0.757 -0.08
    14 -0.935 0.877 -0.303
    15 -0.833 0.871 -0.274
    下载: 导出CSV

    表  4  孔位修正后的孔位误差对比

    Table  4.   Comparison of hole position errors after hole position correction

    类型 孔位误差范围/mm 平均值/mm
    孔位修正前 [0.997, 1.866] 1.476 2
    双线性插值法 [0.0314, 0.703] 0.325
    插值Coons曲面法 [0.105, 0.608] 0.259 2
    基于遗传算法的插值Coons曲面法 [0.058 2, 0.487] 0.195 6
    下载: 导出CSV

    表  5  仿真数据孔位修正后结果对比

    Table  5.   Comparison of results after hole position correction of simulation data

    类型 孔位误差范围/mm 平均值/mm
    孔位修正前 [1.745, 2.655] 2.215
    双线性插值法 [0.129, 0.693] 0.324
    插值Coons曲面法 [0.205, 0.477] 0.35
    基于遗传算法的插值Coons曲面法 [0.132, 0.437] 0.281
    下载: 导出CSV
  • [1] 范玉青. 飞机数字化装配技术综述[J]. 航空制造技术, 2006(10): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200610008.htm

    FAN Y Q. Overview of digital assembly technology for aircraft[J]. Aeronautical Manufacturing Technology, 2006(10): 44-48(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200610008.htm
    [2] LIN C T, WANG M J. Human-robot interaction in an aircraft wing drilling system[J]. International Journal of Industrial Ergonomics, 1999, 23(1-2): 83-94. doi: 10.1016/S0169-8141(97)00103-0
    [3] ZHU W D, MEI B, YAN G R, et al. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2): 160-171. doi: 10.1016/j.rcim.2013.09.014
    [4] 袁红璇. 飞机结构件连接孔制造技术[J]. 航空制造技术, 2007(1): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200701020.htm

    YUAN H X. Manufacturing technology of connecting hole in aircraft structures[J]. Aeronautical Manufacturing Technology, 2007(1): 96-99(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200701020.htm
    [5] 何胜强. 大型飞机数字化装配技术与装备[M]. 北京: 航空工业出版社, 2013: 264-272.

    HE S Q. Digital assembly technologies and equipments of the jumbo aircraft[M]. Beijing: Aviation Industry Press, 2013: 264-272(in Chinese).
    [6] ZHU W D, QU W W, CAO L H, et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2535-2545. doi: 10.1007/s00170-013-4873-5
    [7] 毕运波, 涂国娇, 方伟, 等. 环形轨自动化制孔系统孔位修正方法[J]. 浙江大学学报(工学版), 2015, 49(10): 1863-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201510007.htm

    BI Y B, TU G J, FANG W, et al. Correcting method of hole position for flexible track automatic drilling system[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(10): 1863-1869(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201510007.htm
    [8] 王青, 郑守国, 李江雄, 等. 基于孔边距约束和Shepard插值的孔位修正方法[J]. 航空学报, 2015, 36(12): 4025-4034. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201512026.htm

    WANG Q, ZHENG S G, LI J X, et al. A correction method for hole positions based on hole margin constraints and Shepard interpolation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 4025-4034(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201512026.htm
    [9] 严秋白. 基于爬行机器人的精准制孔技术研究[D]. 南京: 南京航空航天大学, 2016: 15-20.

    YAN Q B. Research on precision drilling technology based on crawling robot[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 15-20(in Chinese).
    [10] 石循磊, 张继文, 刘顺涛, 等. 基于Kriging模型插值的孔位修正策略[J]. 航空学报, 2019, 41(9): 423499. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202009026.htm

    SHI X L, ZHANG J W, LIU S T, et al. Correction strategy for hole positions based on Kriging interpolation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 41(9): 423499(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202009026.htm
    [11] ZOU C, LIU J H. An off-line programming system for flexible drilling of aircraft wing structures[J]. Assembly Automation, 2011, 31(2): 161-168. doi: 10.1108/01445151111117746
    [12] 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 57-65.

    ZHU X X. Modeling technology for free curves and surfaces[M]. Beijing: Science Press, 2000: 57-65(in Chinese).
    [13] FERGUSON J. Multivariable curve interpolation[J]. Journal of the ACM, 1964, 11(2): 221-228. doi: 10.1145/321217.321225
    [14] FAUX I D, PRAT M J. Computational geometry for design and manufacture[M]. New York: Ellis Horwood Ltd, 1979: 243.
    [15] CHENG C H, YANG H S. Optimization of geometrical parameters for Stirling engines based on theoretical analysis[J]. Applied Energy, 2012, 92: 395-405.
    [16] 郑谐, 王婷, 徐云天. 基于遗传算法的飞机脉动式装配线平衡[J]. 计算机集成制造系统, 2018, 24(6): 1367-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201806005.htm

    ZHENG X, WANG T, XU Y T. Automatic drilling and riveting technology and its application in digital assembly[J]. Computer Integrated Manufacturing System, 2018, 24(6): 1367-1373(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201806005.htm
    [17] 陶杨, 韩维. 基于改进多目标遗传算法的舰尾紊流模拟方法[J]. 北京航空航天大学学报, 2015, 41(3): 443-448. doi: 10.13700/j.bh.1001-5965.2014.0198

    TAO Y, HAN W. Carrier airwake simulation methods based on improved multi-objective genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 443-448(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0198
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  70
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 录用日期:  2020-08-07
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答