留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外空空导弹抗干扰效能评估建模

牛得清 伍友利 徐洋 吴鑫 张丹旭 杨鹏飞

牛得清, 伍友利, 徐洋, 等 . 红外空空导弹抗干扰效能评估建模[J]. 北京航空航天大学学报, 2021, 47(9): 1874-1883. doi: 10.13700/j.bh.1001-5965.2020.0334
引用本文: 牛得清, 伍友利, 徐洋, 等 . 红外空空导弹抗干扰效能评估建模[J]. 北京航空航天大学学报, 2021, 47(9): 1874-1883. doi: 10.13700/j.bh.1001-5965.2020.0334
NIU Deqing, WU Youli, XU Yang, et al. Modeling of anti-jamming effectiveness evaluation of infrared air-to-air missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1874-1883. doi: 10.13700/j.bh.1001-5965.2020.0334(in Chinese)
Citation: NIU Deqing, WU Youli, XU Yang, et al. Modeling of anti-jamming effectiveness evaluation of infrared air-to-air missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1874-1883. doi: 10.13700/j.bh.1001-5965.2020.0334(in Chinese)

红外空空导弹抗干扰效能评估建模

doi: 10.13700/j.bh.1001-5965.2020.0334
详细信息
    通讯作者:

    伍友利, E-mail: wadebae@163.com

  • 中图分类号: TN976;TJ762.23

Modeling of anti-jamming effectiveness evaluation of infrared air-to-air missile

More Information
  • 摘要:

    为了摸清红外空空导弹性能、提高导弹作战效能,需要全面有效地对导弹抗干扰能力进行评估。但是受限于无穷多的对抗情况,目前多数基于典型对抗场景进行研究分析,不够全面。为此使用改进的拉丁超立方采样法在全范围内设计采样点。首先,对红外对抗原理和仿真系统进行说明和构建,确定输入参数范围和类型;其次,对拉丁超立方采样进行改进优化,并将其生成的采样结果按需离散化,满足诱饵离散型参数设置需求;最后,运用上述生成的初始参数组合运行仿真系统,将获取的数据作为样本集交给随机森林模型学习,通过调优参数及调整损失矩阵后,得到预测精度为90.4%的红外空空导弹抗干扰效能评估模型。通过仿真,验证了所提模型在不同红外对抗态势和不同提取误差下的有效性。

     

  • 图 1  红外诱饵干扰过程

    Figure 1.  Infrared decoy jamming process

    图 2  比例导引法

    Figure 2.  Proportional navigation guidance

    图 3  仿真系统框架

    Figure 3.  Simulation system framework

    图 4  拉丁方阵及采样

    Figure 4.  Latin square and sampling

    图 5  拉丁超立方采样结果

    Figure 5.  Latin hypercube sampling results

    图 6  示例采样过程

    Figure 6.  Sample sampling procedure

    图 7  导引头视场图

    Figure 7.  Seeker view image

    图 8  存在提取误差情况下评估模型相对误差变化

    Figure 8.  Relative error graph of evaluation model with extraction error

    表  1  图像特征定义

    Table  1.   Image feature definition

    特征编号 特征 定义
    c1 能量
    c2 能量变化率
    c3 平均灰度 c3=c1/s
    c4 长宽比 c4=l/w
    注:m1×n1为导引头图像像素数;Ei, j为像素点能量;s为目标图像区域像素点个数;lw分别为目标图像区域外接矩形的长和宽。
    下载: 导出CSV

    表  2  性能对比结果

    Table  2.   Performance comparison results

    方法 规模m×n 平均值Maximin 平均值Φp 计算时间/s
    lhs 50 000×12 0.189 6.328 44.28
    TPLHD 50 000×12 0.323 5.559 46.32
    下载: 导出CSV

    表  3  随机森林模型结果

    Table  3.   Random forest model results

    预测模型 模型1 模型2
    P1 P2 P3 P1 P2 P3
    T1 35 505 114 110 32 336 604 2 789
    T2 953 4 364 130 403 4 533 511
    T3 1 915 375 6 534 324 164 8 336
    Accuracy/% 92.8 92.8 90.4 90.4 90.4 90.4
    PPV or FDR of T1/% 93 2 2 98 11 24
    PPV or FDR of T2/% 2 90 2 1 86 4
    PPV or FDR of T3/% 5 8 96 1 3 72
    PPV/% 93 90 96 98 86 72
    FDR/% 7 10 4 2 1 28
    注:PPV or FDR of T1为实际情况第一级的PPV或者FDR。
    下载: 导出CSV

    表  4  对抗场景设置

    Table  4.   Countermeasure scenario setting

    参数 场景a 场景b 场景c
    目标机动类型
    首枚诱饵发射时间/s 1 1 1.5
    诱饵总数 12 24 48
    每组数量 12 4 6
    组间间隔/s 0.6 0.8 1
    组内间隔/s 0.1 0.1 0.2
    每次投掷数量 2 1 2
    水平投掷角/(°) 60 60 30
    垂直投掷角/(°) 60 -60 -30
    诱饵投掷速度/(m·s-1) 10 30 40
    导弹水平进入角/(°) 85 10 160
    初始弹目距离/m 2 500 3 500 4 500
    预测结果 Level 3 Level 2 Level 1
    仿真命中率/% 29 64 96
    下载: 导出CSV
  • [1] 黄鹤松, 童中翔, 李建勋, 等. 基于空战评估的红外空空导弹功能仿真[J]. 红外与激光工程, 2015, 44(3): 803-809. doi: 10.3969/j.issn.1007-2276.2015.03.003

    HUANG H S, TONG Z X, LI J X, et al. Functional simulation of infrared air-to-air missiles based on combat assessment[J]. Infrared and Laser Engineering, 2015, 44(3): 803-809(in Chinese). doi: 10.3969/j.issn.1007-2276.2015.03.003
    [2] 牛得清, 伍友利, 徐洋, 等. 点源红外诱饵干扰下环境复杂度量化建模[J]. 红外与激光工程, 2020, 49(2): 211-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002028.htm

    NIU D Q, WU Y L, XU Y, et al. Quantification modeling for environmental complexity under point source infrared decoy interference[J]. Infrared and Laser Engineering, 2020, 49(2): 211-219(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002028.htm
    [3] 李慎波, 李韬锐, 童中翔, 等. 导弹战术参数对面源红外诱饵干扰效能影响[J]. 红外与激光工程, 2018, 47(7): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807019.htm

    LI S B, LI T R, TONG Z X, et al. Influence of tactical parameters of missile on jamming effectiveness of surface source infrared decoy[J]. Infrared and Laser Engineering, 2018, 47(7): 133-142(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807019.htm
    [4] 徐洋, 方洋旺, 伍友利, 等. 红外诱饵干扰下导引头视线角速度跳变特征建模[J]. 红外与激光工程, 2019, 48(5): 110-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201905015.htm

    XU Y, FANG Y W, WU Y L, et al. Los-rate of seeker jump characteristic modelling under IR flare countermeasure[J]. Infrared and Laser Engineering, 2019, 48(5): 110-120(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201905015.htm
    [5] 唐善军, 王枫, 陈晓东. 红外导弹抗干扰能力指标体系和评估研究[J]. 上海航天, 2017, 34(4): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704017.htm

    TANG S J, WANG F, CHEN X D. Anti-jamming performance index system and evaluation of infrared missile[J]. Aerospace Shanghai, 2017, 34(4): 144-149(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704017.htm
    [6] DE JONG W, DAM F A M, KUNZ G J, et al. IR seeker simulator and IR scene generation to evaluate IR decoy effectiveness[C]//European Symposium on Optics and Photonics for Defence and Security, 2004, 5615: 100-111.
    [7] SHEIKHOLESLAMI R, RAZAVI S. Progressive Latin hypercube sampling: An efficient approach for robust sampling-based analysis of environmental models[J]. Environmental Modelling & Software, 2017, 93: 109-126. http://www.onacademic.com/detail/journal_1000039864216710_7baf.html
    [8] MINASNY B, MCBRATNEY A B. A conditioned Latin hypercube method for sampling in the presence of ancillary information[J]. Computers & Geosciences, 2006, 32(9): 1378-1388. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S009830040500292X&originContentFamily=serial&_origin=article&_ts=1483837534&md5=0cfa6bbe96d2aeae4be74f09c998f510
    [9] VAN DAM E R, RENNEN G, HUSSLAGE B. Bounds for maximin Latin hypercube designs[J]. Operations Research, 2009, 57(3): 595-608. doi: 10.1287/opre.1080.0604
    [10] ZHANG J, XU J, JIA K, et al. Optimal sliced Latin hypercube designs with slices of arbitrary run sizes[J]. Mathematics, 2019, 7(9): 854. doi: 10.3390/math7090854
    [11] YUAN R, GUO B, LIU M Q. Flexible sliced Latin hypercube designs with slices of different sizes[J]. Statistical Papers, 2021, 62: 1117-1134. doi: 10.1007/s00362-019-01127-6
    [12] WESSING S, LÓPEZ-IBÁÑEZ M. Latin hypercube designs with branching and nested factors for initialization of automatic algorithm configuration[J]. Evolutionary Computation, 2019, 27(1): 129-145. doi: 10.1162/evco_a_00241
    [13] ZHAO Z W, YANG J M, HU Z Y, et al. A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems[J]. European Journal of Operational Research, 2016, 250(1): 30-45. doi: 10.1016/j.ejor.2015.10.043
    [14] ZHOU X J, LIN D K J, HU X L, et al. Sequential Latin hypercube design with both space-filling and projective properties[J]. Quality and Reliability Engineering International, 2019, 35(6): 1941-1951. doi: 10.1002/qre.2485
    [15] LONG T, WU D, CHEN X, et al. A deterministic sequential maximin Latin hypercube design method using successive local enumeration for metamodel-based optimization[J]. Engineering Optimization, 2016, 48(6): 1019-1036. doi: 10.1080/0305215X.2015.1081518
    [16] 叶鹏程, 潘光, 高山. 一种快速优化拉丁超立方试验设计方法[J]. 西北工业大学学报, 2019, 37(4): 714-723. doi: 10.3969/j.issn.1000-2758.2019.04.010

    YE P C, PAN G, GAO S. Sampling design method of fast optimal Latin hypercube[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 714-723(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.010
    [17] 张鑫, 吴海涛, 曹雪虹. Hadoop环境下基于随机森林的特征选择算法[J]. 计算机技术与发展, 2018, 28(7): 88-92. doi: 10.3969/j.issn.1673-629X.2018.07.019

    ZHANG X, WU H T, CAO X H. A feature selection algorithm based on random forest in Hadoop platform[J]. Computer Technology and Development, 2018, 28(7): 88-92(in Chinese). doi: 10.3969/j.issn.1673-629X.2018.07.019
    [18] 李扬, 祁乐, 聂佩芸. 大规模数据的随机森林算法[J]. 统计与信息论坛, 2020, 35(6): 24-33. doi: 10.3969/j.issn.1007-3116.2020.06.004

    LI Y, QI L, NIE P Y. A distributed random forest algorithm for massive data[J]. Statistics & Information Forum, 2020, 35(6): 24-33(in Chinese). doi: 10.3969/j.issn.1007-3116.2020.06.004
    [19] 兰巍, 贾素玲, 宋世民, 等. 基于随机森林的航天器电信号多分类识别方法[J]. 北京航空航天大学学报, 2017, 43(9): 1773-1778. doi: 10.13700/j.bh.1001-5965.2016.0661

    LAN W, JIA S L, SONG S M, et al. Multi-classification spacecraft electrical signal identification method based on random forest[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1773-1778(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0661
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  682
  • HTML全文浏览量:  94
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 录用日期:  2020-09-18
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答