留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于链路预测的未来新增航线发现

冯霞 王尧

冯霞, 王尧. 基于链路预测的未来新增航线发现[J]. 北京航空航天大学学报, 2021, 47(9): 1729-1738. doi: 10.13700/j.bh.1001-5965.2020.0335
引用本文: 冯霞, 王尧. 基于链路预测的未来新增航线发现[J]. 北京航空航天大学学报, 2021, 47(9): 1729-1738. doi: 10.13700/j.bh.1001-5965.2020.0335
FENG Xia, WANG Yao. Future air routes discovery based on link prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1729-1738. doi: 10.13700/j.bh.1001-5965.2020.0335(in Chinese)
Citation: FENG Xia, WANG Yao. Future air routes discovery based on link prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1729-1738. doi: 10.13700/j.bh.1001-5965.2020.0335(in Chinese)

基于链路预测的未来新增航线发现

doi: 10.13700/j.bh.1001-5965.2020.0335
基金项目: 

国家自然科学基金 61502499

中央高校基本科研业务费专项资金 3122018C024

天津市自然科学基金 18JCYBJC85100

详细信息
    通讯作者:

    冯霞, E-mail: caucfx@126.com

  • 中图分类号: V11;TP399

Future air routes discovery based on link prediction

Funds: 

National Natural Science Foundation of China 61502499

the Fundamental Research Funds for the Central Universities 3122018C024

Tianjin Municipal Natural Science Foundation 18JCYBJC85100

More Information
  • 摘要:

    针对新增航线发现研究中存在的航线选择主观化、网络信息挖掘不充分等问题,考虑航空运输网络的拓扑结构特征和节点(通航城市)层次属性,提出了一种基于链路预测的未来新增航线发现(NARP)模型。NARP模型提取局部封闭子图构建子图邻接矩阵,基于距离标记子图节点结构重要性,采用因子分析和层次聚类提取节点层次属性。在此基础上,融合子图结构和节点属性2类特征,采用深度图卷积神经网络(DGCNN)进行链路预测,实现新增航线发现。在中国航空运输网络实际运行数据上的实验结果表明:较之基准方法,NARP模型的预测准确率最高提升9.28%;在网络极度不完整时,预测准确率可以保持在80%左右;预测结果符合航空运输网络的实际演变情况。

     

  • 图 1  NARP模型的主要框架

    Figure 1.  Major framework of NARP model

    图 2  节点对(x, y)的1跳局部封闭子图

    Figure 2.  The 1-hop local enclosing subgraph for node pairs (x, y)

    图 3  节点标记示意图

    Figure 3.  Schematic diagram of node labeling

    图 4  节点属性示意图

    Figure 4.  Schematic diagram of node attributes

    图 5  子图节点信息矩阵示意图

    Figure 5.  Schematic diagram of subgraph node information matrix

    图 6  DGCNN结构示意图

    Figure 6.  Schematic diagram of DGCNN structure

    图 7  不同基准方法的类型划分

    Figure 7.  Type division of each benchmark method

    图 8  不同数据集划分下各模型的AUC值

    Figure 8.  AUC values of each model under different dataset partition

    图 9  不同数据集划分下各模型的AUC值变化情况对比

    Figure 9.  Comparison of AUC changes of each model under different dataset partition

    表  1  DGCNN的主要参数设置

    Table  1.   Main parameter setting in DGCNN

    参数 数值
    迭代数num_epochs 30
    批大小batch_size 30
    学习率learning_rate 0.000 4
    子图数占比p 0.6
    优化器optimizer RMS prop
    丢弃函数droupout Yes
    下载: 导出CSV

    表  2  数据集7∶3划分下各模型的AUC值

    Table  2.   AUC value of each model under dataset 7∶3 partition

    模型 AUC/%
    AA 82.37±0.62
    Katz 85.78±0.93
    SVD 89.88±0.70
    HOPE 90.59±0.79
    DeepWalk 89.04±2.03
    node2vec 89.83±1.28
    LINE 88.42±3.14
    GAE 86.84±1.12
    NARP-s 91.65±0.95
    NARP 92.47±0.67
    下载: 导出CSV

    表  3  NARP预测的TOP-15新增航线

    Table  3.   Top-15 new air routes predicted by NARP

    序号 新增航线
    1 TAO-SYX
    2 WUH-SJW
    3 TAO-URC
    4 HET-WNZ
    5 KWL-CGQ
    6 HAK-LJG
    7 TAO-ZUH
    8 HGH-DSN
    9 CTU-YNZ
    10 HAK-YNZ
    11 TNA-HFE
    12 SHA-LXA
    13 HAK-CZX
    14 CKG-ACX
    15 INC-NGB
    下载: 导出CSV
  • [1] KASTURI E, DEVI S P, KIRAN S V, et al. Airline route profitability analysis and optimization using BIG DATA analytics on aviation data sets under heuristic techniques[J]. Procedia Computer Science, 2016, 87: 86-92. doi: 10.1016/j.procs.2016.05.131
    [2] 葛伟, 朱金福, 吴薇薇. 蛛网式航线网络模型设计[J]. 交通运输系统工程与信息, 2012, 12(4): 172-177. doi: 10.3969/j.issn.1009-6744.2012.04.025

    GE W, ZHU J F, WU W W. Design of cobweb air route network model[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(4): 172-177(in Chinese). doi: 10.3969/j.issn.1009-6744.2012.04.025
    [3] MARTINEZ V, BERZAL F, CUBERO J C. A survey of link prediction in complex networks[J]. ACM Computing Surveys, 2017, 49(4): 1-33. http://www.researchgate.net/profile/Fernando_Berzal/publication/310912568_A_Survey_of_Link_Prediction_in_Complex_Networks/links/5a3caf220f7e9b10e23c7ee9/A-Survey-of-Link-Prediction-in-Complex-Networks.pdf
    [4] LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[J]. Journal of the Association for Information Science and Technology, 2007, 58(7): 1019-1031.
    [5] LEI C, RUAN J. A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity[J]. Bioinformatics, 2013, 29(3): 355-364. doi: 10.1093/bioinformatics/bts688
    [6] YUE X, WANG Z, HUANG J, et al. Graph embedding on biomedical networks: Methods, applications and evaluations[J]. Bioinformatics, 2020, 36(4): 1241-1251. http://arxiv.org/abs/1906.05017
    [7] TAKAHASHI Y, OSAWA R, SHIRAYAMA S. A basic study of the forecast of air transportation networks using different forecasting methods[J]. Journal of Data Analysis and Information Processing, 2017, 5(2): 49-66. doi: 10.4236/jdaip.2017.52004
    [8] NAJARI S, SALEHI M, RANJBAR V, et al. Link prediction in multiplex networks based on interlayer similarity[J]. Physica A-Statistical Mechanics and Its Applications, 2019, 536: 120-978. http://www.researchgate.net/publication/345497534_Discovering_spurious_links_in_multiplex_networks_based_on_interlayer_relevance
    [9] 刘宏鲲, 吕琳媛, 周涛. 利用链路预测推断网络演化机制[J]. 中国科学: 物理学力学天文学, 2011, 41(7): 816-823. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201107003.htm

    LIU H K, LV L Y, ZHOU T. Uncovering the network evolution mechanism by link prediction[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(7): 816-823(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201107003.htm
    [10] ZHENG Y, LI W, CAO X, et al. Optimization of air transportation network using link prediction methods[C]//Proceedings of the 17th COTA International Conference of Transportation Professionals, 2018: 991-1000.
    [11] ZHANG M, CHEN Y. Link prediction based on graph neural networks[C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2018, 31: 5171-5181.
    [12] ZHANG M, CUI Z, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]//Proceedings of 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 4438-4445.
    [13] 中国民用航空局发展计划司. 中国民航统计年鉴2016[M]. 北京: 中国民航出版社, 2016: 52-140.

    PL CAAC. China civil aviation statistical yearbook 2016[M]. Beijing: China Civil Aviation Publishing House, 2016: 52-140(in Chinese).
    [14] 中国民用航空局发展计划司. 从统计看民航2017[M]. 北京: 中国民航出版社, 2017: 53-137.

    PL CAAC. Statistical data on civil aviation of China[M]. Beijing: China Civil Aviation Publishing House, 2017: 53-137(in Chinese).
    [15] ZHOU T, LV L Y, ZHANG Y C. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623-630. doi: 10.1140/epjb/e2009-00335-8
    [16] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance: A survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. doi: 10.1016/j.knosys.2018.03.022
    [17] MUTLU E C, OGHAZ T A. Review on graph feature learning and feature extraction techniques for link prediction[EB/OL]. (2019-01-10)[2020-06-27]. https://arxiv.org/abs/1901.03425.
    [18] ADAMIC L A, ADAR E. Friends and neighbors on the Web[J]. Social Networks, 2003, 25(3): 211-230. doi: 10.1016/S0378-8733(03)00009-1
    [19] DAI W, LIU X, CAO Y B, et al. Matrix factorization-based prediction of novel drug indications by integrating genomic space[J]. Computational and Mathematical Methods in Medicine, 2015, 2015: 1-9. http://www.onacademic.com/detail/journal_1000040466888510_76c2.html
    [20] OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1105-1114.
    [21] PEROZZI B, AI-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710.
    [22] GROVER A, LESKOVEC J. node2vec: Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864.
    [23] TANG J, QU M, WANG M, et al. LINE: Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, 2015: 1067-1077.
    [24] KIPF T N, MAX W. Variational graph auto-encoders[EB/OL]. (2016-11-21)[2020-07-01]. https://arxiv.org/abs/1611.07308.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  115
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 录用日期:  2020-09-27
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答