-
摘要:
高强度辐射场实验室环境下构建困难,应用双大电流注入(BCI)法替代辐照法进行抗扰度研究具有广阔的前景。针对当前双电流钳与线束耦合机理不清晰的问题,建立了双电流钳与线束耦合的精确解析模型。采用先分段后级联的方法对线束进行研究,首先在电流钳与线束的耦合区间建立π型等效电路模型,然后在电流钳与线束的非耦合区间基于传输线理论构建链路参数矩阵,最后将各区间级联为线束终端响应预测模型。基于有限积分法建立数值电磁仿真模型,比较解析模型与数值仿真模型对线束终端响应的预测结果,结果显示:二者对线束终端响应电压的求解结果有较好的一致性,MAPE为17%,进而验证了模型的有效性。应用模型分析电流钳与线束的相对位置对终端响应电压的影响,结果表明:低频段几乎无影响,超过100 MHz,线束终端响应电压的幅值与谐振点发生改变。
-
关键词:
- 大电流注入(BCI) /
- 传输线理论 /
- 链路参数 /
- 抗扰度 /
- 级联
Abstract:It is difficult to construct in a high-intensity radiation field laboratory environment, and the application of dual Bulk Current Injection (BCI) probe instead of irradiation methods for interference immunity research has broad prospects. Aimed at the current unclear coupling mechanism between dual bulk current injection probe and wire harnesses, accurate model of dual bulk current injection probe coupled with wire harness is established. Using the method of segmentation and then cascading, wire harness is studied. First, the equivalent circuit model is established in the coupling zone between the probe and the harness, and then the link parameter matrix is constructed based on the transmission line theory in the uncoupling zone. Finally, it could be cascaded into a wire harness terminal response prediction model. A numerical electromagnetic simulation model is established based on finite integration method, and the prediction results of the prediction model and the numerical simulation model for the wire harness terminal response are compared. The results show that the two have good agreement on the results of the wire harness terminal voltage, and MAPE is 17%, which further verifies the effectiveness of the model. Using the model to analyze the influence of the relative position of the harness and probe on the response voltage of the terminal, the results show that the relative position has no effect in the low frequency band, exceeding 100 MHz, and the amplitude and resonance point of the terminal voltage will change.
-
表 1 一阶Debye模型参数
Table 1. First-order Debye model parameters
参数 数值 电导率σ/(S·m-1) 1.3 稳态常数 1 静态常数 375 驰豫时间/ns 0.5 表 2 电流钳结构参数
Table 2. Structural parameters of current injection probe
参数 数值 rin/mm 24 rout/mm 39 rpin/mm 16 lc/mm 130 tc/mm 1 wc/mm 6 w/mm 50 W/mm 63 N1 1 -
[1] 魏光辉, 卢新福, 潘晓东. 强场电磁辐射效应测试方法研究进展与发展趋势[J]. 高电压技术, 2016, 42(5): 1347-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201605002.htmWEI G H, LU X F, PAN X D. Recent progress and development in test methods for high intensity electromagnetic field radiation effect[J]. High Voltage Engineering, 2016, 42(5): 1347-1355(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201605002.htm [2] 杨茂松, 孙永卫, 潘晓东, 等. 低频线缆BCI等效替代强场连续波电磁辐射理论研究[J]. 河北师范大学学报(自然科学版), 2018, 42(5): 396-402. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSZ201805006.htmYANG M S, SUN Y W, PAN X D, et al. Research on the theory of BCI equivalent alternative radiation for low-frequency cable coupling channel[J]. Journal of Hebei Normal University (Natural Science Edition), 2018, 42(5): 396-402(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSZ201805006.htm [3] 肖春燕, 高帅. 多电飞机电气负载引起的电磁干扰[J]. 北京航空航天大学学报, 2015, 41(5): 793-801. doi: 10.13700/j.bh.1001-5965.2014.0339XIAO C Y, GAO S. Electromagnetic interference caused by electric load of more electric aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 793-801(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0339 [4] RTCA Inc. Environmental conditions and test procedures for airborne equipment: RTCA DO-160G[S]. Washington, D.C. : RTCA Inc, 2010. [5] 中国人民解放军总装备部. 军用设备和分系统电磁发射和敏感度要求与测量: GJB 151B-2013[S]. 北京: 中国人民解放军总装备部, 2013.PLA General Equipment Department. Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems: GJB 151B-2013[S]. Beijing: PLA General Equipment Department, 2013(in Chinese). [6] U.S. Department of Defense. Requirements for the control of electromagnetic interference characteristics of subsystems and equipment: MIL-STD-461G[S]. Washington, D.C. : U.S. Department of Defense, 2015. [7] 卢新福, 魏光辉, 潘晓东, 等. 差模电流注入等效电磁脉冲辐射技术仿真研究[J]. 中国舰船研究, 2015, 10(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201502019.htmLU X F, WEI G H, PAN X D, et al. Simulation study on the differential-mode current injection equivalent to electromagnetic pulse radiation[J]. Chinese Journal of Ship Research, 2015, 10(2): 99-103(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201502019.htm [8] 魏光辉, 潘晓东, 卢新福. 注入与辐照相结合的电磁辐射安全裕度试验方法[J]. 高电压技术, 2012, 38(9): 2213-2220. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201209011.htmWEI G H, PAN X D, LU X F. Test method for electromagnetic radiation safety margin combined iniection with radiation[J]. High Voltage Engineering, 2012, 38(9): 2213-2220(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201209011.htm [9] 杨茂松, 孙永卫, 潘晓东, 等. 平行双线BCI等效替代强场连续波电磁辐射实验研究[J]. 强激光与粒子束, 2018, 30(9): 093201. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201809011.htmYANG M S, SUN Y W, PAN X D, et al. Testing technology of using bulk current injection with parallel double line as substitute for high field continuous wave electromagnetic radiation[J]. High Power Laser and Particle Beams, 2018, 30(9): 093201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201809011.htm [10] 杨茂松, 孙永卫, 潘晓东, 等. 双绞线BCI等效替代强场电磁辐射实验研究[J]. 微波学报, 2018, 34(6): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201806017.htmYANG M S, SUN Y W, PAN X D, et al. Testing technology of using twisted pair cable BCI as substitution for high field continuous wave EM radiation[J]. Journal of Microwaves, 2018, 34(6): 72-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201806017.htm [11] GRASSI F, MARLIANI F, PIGNARI S A. Circuit modeling of injection probes for bulk current injection[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(3): 563-576. http://www.onacademic.com/detail/journal_1000035158171010_9f22.html [12] DEROY P, PIPER S. Full-wave modeling of bulk current injection probe coupling to multi-conductor cable bundles[C]//2016 IEEE International Symposium on Electromagnetic Compatibility (EMC). Piscataway: IEEE Press, 2016: 770-774. [13] NAYAK B P, DAS A, VEDICHERLA S R, et al. Circuit models for bulk current injection (BCI) clamps with multiple cables[C]//2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). Piscataway: IEEE Press, 2018: 1160-1163. [14] GRASSI F. Accurate modeling of ferrite-core effects in probes for bulk current injection[C]//IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems. Piscataway: IEEE Press, 2009: 1-6. [15] OGANEZOVA I, BUNLON X, GHEONJIAN A, et al. A new and easy approach to create BCI models[C]//2014 IEEE International Symposium on Electromagnetic Compatibility. Piscataway: IEEE Press, 2014: 91-96. [16] ZHU L L, JING S H. MATLAB-based multi-parameter optimization of bulk current injection probe[C]//2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE). Piscataway: IEEE Press, 2019: 170-173. [17] PAUL C R. Analysis of multiconductor transmission lines[M]. 2nd ed. Hoboken: Wiley, 2008. [18] TOSCANI N, GRASSI F, SPADACINI G, et al. Circuit and electromagnetic modeling of bulk current injection test setups involving complex wiring harnesses[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1752-1760. http://www.onacademic.com/detail/journal_1000040373062610_0d33.html