留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含间隙非线性机翼跨声速颤振时滞反馈控制

聂雪媛 郑冠男 杨国伟

聂雪媛, 郑冠男, 杨国伟等 . 含间隙非线性机翼跨声速颤振时滞反馈控制[J]. 北京航空航天大学学报, 2021, 47(10): 1980-1988. doi: 10.13700/j.bh.1001-5965.2020.0356
引用本文: 聂雪媛, 郑冠男, 杨国伟等 . 含间隙非线性机翼跨声速颤振时滞反馈控制[J]. 北京航空航天大学学报, 2021, 47(10): 1980-1988. doi: 10.13700/j.bh.1001-5965.2020.0356
NIE Xueyuan, ZHENG Guannan, YANG Guoweiet al. Time delay feedback control for transonic flutter of airfoil with free-play nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1980-1988. doi: 10.13700/j.bh.1001-5965.2020.0356(in Chinese)
Citation: NIE Xueyuan, ZHENG Guannan, YANG Guoweiet al. Time delay feedback control for transonic flutter of airfoil with free-play nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1980-1988. doi: 10.13700/j.bh.1001-5965.2020.0356(in Chinese)

含间隙非线性机翼跨声速颤振时滞反馈控制

doi: 10.13700/j.bh.1001-5965.2020.0356
基金项目: 

国家自然科学基金 11702298

国家自然科学基金 11672303

详细信息
    通讯作者:

    郑冠男, E-mail: zhengguannan@imech.ac.cn

  • 中图分类号: V221

Time delay feedback control for transonic flutter of airfoil with free-play nonlinearity

Funds: 

National Natural Science Foundation of China 11702298

National Natural Science Foundation of China 11672303

More Information
  • 摘要:

    颤振主动控制会引入时滞,对气动弹性系统闭环稳定性具有显著影响。针对当前考虑时滞的机翼颤振主动控制多集中在亚、超声速域,采用线性气动力分析的研究现状,结合现代飞机大都以跨声速巡航、控制面偏转为作动器进行主动控制的应用特点,发展了考虑结构间隙非线性,基于气动力降阶模型的跨声速颤振时滞反馈主动控制方法。首先,以白噪声为激励信号,辨识得到跨声速下非定常气动力降阶模型,与间隙非线性结构模型耦合,构建被控对象状态空间模型;然后,通过一种含积分项的状态变换将输入信号存在时滞的被控系统转化为无时滞的系统;最后,采用最优控制理论设计最优时滞反馈控制。仿真结果表明:对于含时滞的系统,若施加不考虑时滞影响的控制方法,则无法抑制颤振,所提控制方法的有效性不受时滞大小的影响,可有效抑制颤振的发生。

     

  • 图 1  带控制面的二元翼型

    Figure 1.  Two-dimensional airfoil with control surface

    图 2  间隙非线性

    Figure 2.  Free-play nonlinearity

    图 3  气动弹性系统闭环控制框图

    Figure 3.  Block diagram of closed-loop control of aeroelastic system

    图 4  3211信号激励下ROM和CFD计算的气动力结果比较

    Figure 4.  Comparison of aerodynamic forces with ROM and CFD excited by 3211 signals

    图 5  ROM和CFD结算结构响应结果比较(Ma=0.8U*=1.48)

    Figure 5.  Comparison of structure response result with ROM and CFD(Ma=0.8U*=1.48)

    图 6  俯仰角相轨迹(Ma=0.8U*=1.48)

    Figure 6.  Phrase portrait of pitch angle at Ma=0.8U*=1.48

    图 7  俯仰方向极限环振荡(Ma=0.8U*=1.48)

    Figure 7.  Limit-cycle oscillation of pitch at Ma=0.8U*=1.48

    图 8  3211信号控制面偏转输入控制面ROM和CFD计算的气动力结果比较

    Figure 8.  Comparison of control surface aerodynamic forces with ROM and CFD excited by 3211 deflection input signals

    图 9  无时滞系统颤振控制效果

    Figure 9.  Flutter control result for system without delay

    图 10  闭环控制系统控制面偏转角

    Figure 10.  Control surface deflection of closed-loop control system

    图 11  时滞系统的无时滞控制相平面图及控制面偏转角

    Figure 11.  Phase portrait of no delay control for system with time delay and corresponding control surface deflection

    图 12  考虑时滞的控制器对时滞系统颤振控制的相平面图及控制面偏转角(λ=0.37)

    Figure 12.  Phase portrait of flutter control for system with time delay exerted by controller designed with time delay and corresponding control surface deflection at λ=0.37

    图 13  考虑时滞的控制器对时滞系统颤振控制的相平面图及控制面偏转角(λ=1.6)

    Figure 13.  Phase portrait of flutter control for system with time delay exerted by controller designed with time delay and corresponding control surface deflection at λ=1.6

    表  1  模型无量纲参数

    Table  1.   Non-dimensional parameters of model

    参数 数值
    xα 0.25
    rα 0.629
    ωh/ωα 0.708
    μ 36.15
    δ 0.001 745
    下载: 导出CSV
  • [1] 王在华, 胡海岩. 时滞动力系统的稳定性与分岔: 从理论走向应用[J]. 力学进展, 2013, 43(1): 3-20. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201301002.htm

    WANG Z H, HU H Y. Stability and bifurcation of delayed dynamic systems: From theory to application[J]. Advances in Mechanics, 2013, 43(1): 3-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201301002.htm
    [2] 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1): 1-27. doi: 10.3969/j.issn.1006-6616.2016.01.001

    HU H Y, ZHAO Y H, HUANG R. Studies on aeroelastic analysis and control of aircraft structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27(in Chinese). doi: 10.3969/j.issn.1006-6616.2016.01.001
    [3] ZHAO Y H. Stability of a time-delayed aeroelastic system with a control surface[J]. Aerospace Science and Technology, 2011, 15(1): 72-77. doi: 10.1016/j.ast.2010.05.008
    [4] HUANG R, HI H Y, ZHAO Y H. Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay[J]. Journal of Fluids and Structures, 2012, 34: 33-50. doi: 10.1016/j.jfluidstructs.2012.05.012
    [5] LUO M X, GAO M Z, CAI G P. Delayed full-state feedback control of airfoil flutter using sliding mode control method[J]. Journal of Fluids and Structures, 2016, 61: 262-273. doi: 10.1016/j.jfluidstructs.2015.11.012
    [6] GAP M Z, CAI G P. Finite-time fault-tolerant control for flutter involving control delay[J]. Journal of the Franklin Institute, 2016, 353(9): 2009-2029. doi: 10.1016/j.jfranklin.2016.03.010
    [7] XU B, ZHANG W, MA J. Stability and Hopf bifurcation of a two-dimensional supersonic airfoil with a time-delayed feedback control surface[J]. Nonlinear Dynamics, 2014, 77(3): 1-19.
    [8] RAMESH M, NARAYANAN S. Controlling chaotic motions in a two-dimensional airfoil using time-delayed feedback[J]. Journal of Sound and Vibration, 2001, 239(5): 1037-1049. doi: 10.1006/jsvi.2000.3181
    [9] MARZOCCA P, LIBRESU L, SILVA W A. Time-delay effects on linear/nonlinear feedback control of simple aeroelastic systems[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 53-62. doi: 10.2514/1.4335
    [10] ARAUJO J M, SANTOS T L M. Control of second-order asymmetric systems with time delay: Smith predictor approach[J]. Mechanical Systems and Signal Processing, 2019, 137: 106355.
    [11] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4): 1103-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504008.htm

    NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1103-1111(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504008.htm
    [12] 黄程德, 郑冠男, 杨国伟, 等. 基于CFD/CSD耦合含间隙三维全动舵面气动弹性研究[J]. 应用力学学报, 2018, 35(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201801001.htm

    HUANG C D, ZHENG G N, YANG G W, et al. Aeroelastic study of a three dimensional all-movable wing with free play using CFD/CSD coupling[J]. Chinese Journal of Applied Mechanics, 2018, 35(1): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201801001.htm
    [13] KWON W H, PEARSON A E. Feedback stabilization of linear systems with delayed control[J]. IEEE Transactions on Automatic Control, 1980, 25(2): 266-269. doi: 10.1109/TAC.1980.1102288
    [14] CAI G P, HUANG J Z. Instantaneous optimal method for vibration control of linear sampled-data systems with time delay in control[J]. Journal of Sound and Vibration, 2003, 262(5): 1057-1071. doi: 10.1016/S0022-460X(02)01083-0
    [15] KIM D H, LEE I. Transonic and low-supersonic aeroelastic analysis of a two-degree-of-freedom airfoil with a freeplay non-linearity[J]. Journal of Sound and Vibration, 2000, 234(5): 859-880. doi: 10.1006/jsvi.2000.2907
    [16] HE S, YANG Z C, GU Y S. Nonlinear dynamics of an aeroelastic airfoil with free-play in transonic flow[J]. Nonlinear Dynamics, 2017, 87(4): 2099-2125. doi: 10.1007/s11071-016-3176-4
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  163
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 录用日期:  2020-09-19
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答