留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风偏差对火箭最大气动载荷精度的影响

程胡华 李娟 肖云清 沈洪标 赵亮

程胡华, 李娟, 肖云清, 等 . 风偏差对火箭最大气动载荷精度的影响[J]. 北京航空航天大学学报, 2021, 47(10): 2034-2042. doi: 10.13700/j.bh.1001-5965.2020.0358
引用本文: 程胡华, 李娟, 肖云清, 等 . 风偏差对火箭最大气动载荷精度的影响[J]. 北京航空航天大学学报, 2021, 47(10): 2034-2042. doi: 10.13700/j.bh.1001-5965.2020.0358
CHENG Huhua, LI Juan, XIAO Yunqing, et al. Influence of wind deviation on rocket maximum aerodynamic load accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2034-2042. doi: 10.13700/j.bh.1001-5965.2020.0358(in Chinese)
Citation: CHENG Huhua, LI Juan, XIAO Yunqing, et al. Influence of wind deviation on rocket maximum aerodynamic load accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2034-2042. doi: 10.13700/j.bh.1001-5965.2020.0358(in Chinese)

风偏差对火箭最大气动载荷精度的影响

doi: 10.13700/j.bh.1001-5965.2020.0358
基金项目: 

中国科学院战略性先导科技专项 XDA17010105

详细信息
    通讯作者:

    肖云清, E-mail: xiaoyunqing00@163.com

  • 中图分类号: V411.8

Influence of wind deviation on rocket maximum aerodynamic load accuracy

Funds: 

Strategic Priority Research Program of Chinese Academy of Sciences XDA17010105

More Information
  • 摘要:

    高空风的预报精度对运载火箭的飞行安全有重要影响,主要表现在对运载火箭飞行中的最大气动载荷的精度影响。以某地区实况风为基准,分析了高空风预报值产生的风偏差对火箭最大气动载荷参数精度的影响。结果表明:最大气动载荷预报值的精度随高空风预报时效延长而降低,其相对误差从第1天的5.68%增长到第11天的26.49%;且最大气动载荷预报值精度与季节有关,该预报精度在秋季最高,春季最低。研究结果在火箭发射的飞行保障及安全决策方面具有参考价值。

     

  • 图 1  预报风与实况风之间的纬向风差异随预报日数变化特征

    Figure 1.  Zonal wind difference between forecast wind and real wind varies with the number of forecast days

    图 2  预报风与实况风之间的经向风差异随预报日数变化特征

    Figure 2.  Meridional wind difference between forecast wind and real wind varies with the number of forecast days

    图 3  maxFmaxR之间的差异随预报日数变化特征

    Figure 3.  Difference between maxF and maxR varies with the number of forecast days

    图 4  不同季节maxFmaxR之间的差异随预报日数变化特征

    Figure 4.  Difference between maxF and maxR in different seasons varies with the number of forecast days

    图 5  max偏差在不同区间范围内的占有率随预报日数变化特征

    Figure 5.  Variation characteristics of occupancy rate of max deviation in different intervals with the number of forecast days

  • [1] 李效明, 许北辰, 陈存芸. 一种运载火箭减载控制工程方法[J]. 上海航天, 2004, 21(6): 7-14. doi: 10.3969/j.issn.1006-1630.2004.06.002

    LI X M, XU B C, CHEN C Y. An engineering method on the control of decreasing load for a launch vehicle[J]. Aerospace Shanghai, 2004, 21(6): 7-14(in Chinese). doi: 10.3969/j.issn.1006-1630.2004.06.002
    [2] 廖沫, 张平, 陈宗基. 运载火箭载荷主动减缓控制律的设计与仿真[J]. 计算机仿真, 2006, 23(1): 54-58. doi: 10.3969/j.issn.1006-9348.2006.01.017

    LIAO M, ZHANG P, CHEN Z J. Design and simulation of active load-reducing control law of launch vehicle[J]. Computer Integrated Manufacturing Systems, 2006, 23(1): 54-58(in Chinese). doi: 10.3969/j.issn.1006-9348.2006.01.017
    [3] 宋征宇. 运载火箭飞行减载控制技术[J]. 航天控制, 2013, 31(5): 3-8. doi: 10.3969/j.issn.1006-3242.2013.05.001

    SONG Z Y. Load control technology in launch vehicle[J]. Aerospace Control, 2013, 31(5): 3-8(in Chinese). doi: 10.3969/j.issn.1006-3242.2013.05.001
    [4] 耿光有, 李东. 由火箭一级飞行弹道分析底部力等动力参数[J]. 导弹与航天运载技术, 2014, 335(5): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201405003.htm

    GENG G Y, LI D. Analysis of dynamic parameters such as base-force for 1st stage of a launch vehicle via the trajectory[J]. Missiles and Space Vehicles, 2014, 335(5): 10-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201405003.htm
    [5] 杨伟奇, 许志, 唐硕, 等. 基于自抗扰的运载火箭主动减载控制技术[J]. 北京航空航天大学学报, 2016, 42(1): 130-137. doi: 10.13700/j.bh.1001-5965.2015.0051

    YANG W Q, XU Z, TANG S, et al. Active disturbance rejection control method on load relief system for launch vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 130-137(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0051
    [6] 周毅, 候志明, 刘宇迪. 数值天气预报基础[M]. 北京: 气象出版社, 2003: 1-23.

    ZHOU Y, HOU Z M, LIU Y D. Fundamentals of numerical weather forecast[M]. Beijing: China Meteorological Press, 2003: 1-23.
    [7] HOUTEKAMER P L, LEFAIVRE L, DEROME J, et al. A system simulation approach to ensemble prediction[J]. Monthly Weather Review, 1996, 124(6): 1225-1242. doi: 10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
    [8] 井立红, 高婧, 赵忠, 等. 数值预报模式在新疆塔城地区降水预报中的检验[J]. 干旱气象, 2017, 35(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701018.htm

    JING L H, GAO J, ZHAO Z, et al. Test and comparative analysis on precipitation forecast based on serveral numerical forecast models in Tacheng of Xinjiang[J]. Journal of Arid Meteorology, 2017, 35(1): 134-141(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701018.htm
    [9] LORENZ E N. A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 1965, 17(3): 321-333. doi: 10.3402/tellusa.v17i3.9076
    [10] LORENZ E N. Atmospheric predictability experiments with a large numerical model[J]. Tellus, 1982, 34(6): 505-513. doi: 10.3402/tellusa.v34i6.10836
    [11] 陈超君, 王东海, 李国平, 等. 冬季高海拔复杂地形下GRAPES-Meso要素预报的检验评估[J]. 气象, 2012, 38(6): 657-668. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201206004.htm

    CHEN C J, WANG D H, LI G P, et al. A study of the GRAPES-Meso prediction verification for high altitude and complex terrain during winter time[J]. Meteorological Monthly, 2012, 38(6): 657-668(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201206004.htm
    [12] 张宁娜, 黄阁, 吴曼丽, 等. 2010年国内外3种数值预报在东北地区的预报检验[J]. 气象与环境学报, 2012, 28(2): 28-33. doi: 10.3969/j.issn.1673-503X.2012.02.006

    ZHANG N N, HUANG G, WU M L, et al. Contrastive verification of three numerical prediction products in the northeast of China in 2010[J]. Journal of Meteorology and Environment, 2012, 28(2): 28-33(in Chinese). doi: 10.3969/j.issn.1673-503X.2012.02.006
    [13] 潘留杰, 张宏芳, 朱伟军, 等. ECMWF模式对东北半球气象要素场预报能力的检验[J]. 气候与环境研究, 2013, 18(1): 111-123. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201301013.htm

    PAN L J, ZHANG H F, ZHU W J, et al. Forecast performance verification of the ECMWF model over the northeast hemisphere[J]. Climatic and Environmental Research, 2013, 18(1): 111-123(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201301013.htm
    [14] 万瑜, 曹兴, 窦新英, 等. ECMWF细网格数值预报产品在乌鲁木齐东南大风预报中的释用[J]. 沙漠与绿洲气象, 2014, 8(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201401008.htm

    WAN Y, CAO X, DOU X Y, et al. The application of ECMWF refined net numerical forecast data in the southeast gale in Urumqi[J]. Desert and Oasis Meteorology, 2014, 8(1): 32-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201401008.htm
    [15] 荀学义, 孟雪峰, 王学强, 等. T639和EC模式对内蒙古主要天气系统的预报性能检验[J]. 气象科技, 2014, 42(5): 832-838. doi: 10.3969/j.issn.1671-6345.2014.05.020

    XUN X Y, MENG X F, WANG X Q, et al. Verification and assessment of forecasting performance of general circulation systems in Inner Mongolia by T639 and EC model products[J]. Meteorological Science and Technology, 2014, 42(5): 832-838(in Chinese). doi: 10.3969/j.issn.1671-6345.2014.05.020
    [16] 尹姗, 任宏昌. 2017年9-11月T639、ECMWF及日本模式中期预报性能检验[J]. 气象, 2018, 44(2): 326-333. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201802013.htm

    YIN S, REN H C. Performance verification of medium-range forecasting by T639, ECMWF and Japan models from September to November 2017[J]. Meteorological Monthly, 2018, 44(2): 326-333(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201802013.htm
  • 加载中
图(5)
计量
  • 文章访问数:  564
  • HTML全文浏览量:  102
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 录用日期:  2021-01-08
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答