留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环量控制翼型非定常气动力建模

雷玉昌 张登成 张艳华

雷玉昌, 张登成, 张艳华等 . 环量控制翼型非定常气动力建模[J]. 北京航空航天大学学报, 2021, 47(10): 2138-2148. doi: 10.13700/j.bh.1001-5965.2020.0360
引用本文: 雷玉昌, 张登成, 张艳华等 . 环量控制翼型非定常气动力建模[J]. 北京航空航天大学学报, 2021, 47(10): 2138-2148. doi: 10.13700/j.bh.1001-5965.2020.0360
LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhuaet al. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2138-2148. doi: 10.13700/j.bh.1001-5965.2020.0360(in Chinese)
Citation: LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhuaet al. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2138-2148. doi: 10.13700/j.bh.1001-5965.2020.0360(in Chinese)

环量控制翼型非定常气动力建模

doi: 10.13700/j.bh.1001-5965.2020.0360
详细信息
    通讯作者:

    张登成, E-mail: dengcheng_zhang@163.com

  • 中图分类号: V212.1;V211.3

Unsteady aerodynamic modeling of circulation control airfoil

More Information
  • 摘要:

    针对目前环量控制技术中射流参数与迎角对翼型气动特性的影响高度耦合,对应非定常气动力模型精度较差的研究现状,基于环量控制翼型强迫俯仰振动数值模拟数据,借助Kriging模型实现环量控制翼型的定常气动力插值,借助微分方程模型完成了适用于环量控制翼型的线性微分方程建模,采用两步线性回归参数辨识方法辨识线性微分方程模型中特征时间常数等参数,对高动量系数大振幅流动状态下的非线性影响进行修正。研究结果表明:基于Kriging模型实现的环量控制翼型定常气动力插值精度较传统气动导数模型高,建立的环量控制翼型非定常气动力模型能够精确预测不同流动状态下的气动力和力矩系数变化情况。

     

  • 图 1  修形后的超临界翼型

    Figure 1.  Supercritical airfoil after modification

    图 2  翼型计算网格

    Figure 2.  Airfoil's computational grid

    图 3  NACA0012翼型非定常升力系数仿真与实验对比

    Figure 3.  Comparison of simulation and experimental results of unsteady lift coefficient of NACA0012 airfoil

    图 4  环量控制翼型升力系数仿真与实验对比

    Figure 4.  Comparison of simulation and experimental results of circulation control airfoil's lift coefficient

    图 5  Kriging模型预测结果

    Figure 5.  Prediction result of Kriging model

    图 6  Kriging模型预测误差

    Figure 6.  Prediction error of Kriging model

    图 7  Kriging模型与传统气动导数模型对比结果

    Figure 7.  Comparison between Kriging model and aerodynamic derivative model

    图 8  不同迎角、减缩频率下的同相/异相导数

    Figure 8.  In-phase and out-phase derivatives at different angles of attack and reduced frequencies

    图 9  时间常数随动量系数的变化曲线

    Figure 9.  Variation curve of time constant with momentum coefficient

    图 10  Cαatt(α0, Cμ0)的辨识结果

    Figure 10.  Identification results of Cαatt(α0, Cμ0)

    图 11  小振幅流动状态下结果对比

    Figure 11.  Comparison of results under small-amplitude flow

    图 12  大振幅流动状态下结果对比

    Figure 12.  Comparison of results under large-amplitude flow

    图 13  ki(α, Cμ)辨识结果

    Figure 13.  Identification result of ki(α, Cμ)

    图 14  非线性非定常气动力模型结果对比(Cμ=0.05)

    Figure 14.  Comparison of results of nonlinear unsteady aerodynamic models (Cμ=0.05)

  • [1] SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. doi: 10.1061/(ASCE)AS.1943-5525.0000947
    [2] KANISTRAS K, VALAVANIS K P, RUTHERFORD M J. Foundations of circulation control based small-scale unmanned aircraft[M]. Berlin: Springer International Publishing, 2018: 37-46.
    [3] ENGLAR R J. Circulation control for high lift and drag generation on a STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
    [4] JOLSLIN R D, JONES G S. Application of circulation control technology (Progress in astronautics and aeronautics)[M]. Reston: AIAA, 2006: 105-113.
    [5] YAROS S F, SEXSTONE M G, HUEBNER L D, et al. Synergistic airframe-propulsion interactions and integrations[M]. Washington, D.C. : NASA, 1998: 14-28.
    [6] JONES G S, LIN J C, ALLEN B G, et al. Overview of CFD validation experiments for circulation control applications at NASA[C]//International Powered Lift Conference. London: Royal Aeronautical Society, 2008: 22-24.
    [7] ENGLAR R J, HUSON G G. Development of advanced circulation control wing high-lift airfoils[J]. Journal of Aircraft, 1984, 21(7): 476-483. doi: 10.2514/3.44996
    [8] ENGLAR R J. Circulation control pneumatic aerodynamics: Blown force and moment augmentation and modification-Past, present and future[C]//Fluids 2000 Conference and Exhibit, 2000: 2541.
    [9] XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2018, 56(2): 554-570. doi: 10.2514/1.J056223
    [10] REGER R, NICKELS A, UKEILEY L, et al. On the acoustics of a circulation control airfoil[J]. Journal of Sound and Vibration, 2017, 388: 85-104. doi: 10.1016/j.jsv.2016.10.015
    [11] WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808-3824. doi: 10.2514/1.J056787
    [12] WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [13] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608001.htm

    WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608001.htm
    [14] 孙海生, 张海酉, 刘志涛. 大迎角非定常气动力建模方法研究[J]. 空气动力学学报, 2011, 29(6): 733-737. doi: 10.3969/j.issn.0258-1825.2011.06.008

    SUN H S, ZHANG H Y, LIU Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011, 29(6): 733-737(in Chinese). doi: 10.3969/j.issn.0258-1825.2011.06.008
    [15] LOTH J L, BOASSON M. Circulation controlled STOL wing optimization[J]. Journal of Aircraft, 1984, 21(2): 128-134. doi: 10.2514/3.48235
    [16] ENGLAR R J, SMITH M J, KELLEY S M, et al. Application of circulation control to advanced subsonic transport aircraft, Part Ⅰ-Airfoil development[J]. Journal of Aircraft, 1994, 31(5): 1160-1168. doi: 10.2514/3.56907
    [17] HOHOLIS G A. Assessment of fluidic control effectors using computational fluid dynamics[D]. Liverpool: University of Liverpool, 2016: 1-30.
    [18] KRUKOW I, DINKLER D. A reduced-order model for the investigation of the aeroelasticity of circulation-controlled wings[J]. CEAS Aeronautical Journal, 2014, 5(2): 145-156. doi: 10.1007/s13272-013-0097-5
    [19] SEMAAN R, EL SAYED M Y, RADESPIEL R. Sparse model of the lift gains of a circulation control wing with unsteady coanda blowing[M]. Berlin: Springer, 2019: 3-18.
    [20] LIN G F, LAN C, BRANDON J, et al. A generalized dynamic aerodynamic coefficient model for flight dynamics applications[C]//22nd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1997: 3643.
    [21] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. doi: 10.2514/3.46618
    [22] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398. doi: 10.3321/j.issn:1000-6893.1996.04.003

    WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398(in Chinese). doi: 10.3321/j.issn:1000-6893.1996.04.003
    [23] 孔轶男, 王立新, 何开锋, 等. 过失速机动的模糊逻辑建模仿真[J]. 北京航空航天大学学报, 2007, 33(10): 1174-1177. doi: 10.3969/j.issn.1001-5965.2007.10.011

    KONG Y N, WANG L X, HE K F, et al. Fuzzy logic models for unsteady post stall maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1174-1177(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.10.011
    [24] 付军泉, 史志伟, 陈坤, 等. 基于EKF的实时循环神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2018, 36(4): 658-663. doi: 10.7638/kqdlxxb-2016.0131

    FU J Q, SHI Z W, CHEN K, et al. Applications of real-time recurrent neural network based on extended Kalman filter in unsteady aerodynamics modeling[J]. Acta Aerodynamica Sinica, 2018, 36(4): 658-663(in Chinese). doi: 10.7638/kqdlxxb-2016.0131
    [25] JONES G. Pneumatic flap performance for a 2D circulation control airfoil, stedy and pulsed[R]. Washington, D.C. : Langley Research Center, 2005: 191-244.
    [26] KHARATI KOOPAEE M. Effect of flow regime change from subsonic to transonic on the air loads of an oscillating airfoil[J]. Journal of Fluids and Structures, 2014, 50: 312-328. doi: 10.1016/j.jfluidstructs.2014.05.017
    [27] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htm

    HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htm
    [28] 龚正, 沈宏良. 非定常气动力非线性微分方程建模方法[J]. 航空学报, 2011, 32(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201101011.htm

    GONG Z, SHEN H L. Unsteady aerodynamic modeling method using nonlinear differential equations[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 83-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201101011.htm
    [29] 雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm
    [30] GREENWELL D, KHRABROV A, GOMAN M, et al. Two-step linear regression method for identification of high incidence unsteady aerodynamic model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2001: 4080.
  • 加载中
图(14)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  158
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 录用日期:  2020-12-21
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答