Design of finite-time cooperative guidance law for hypersonic vehicles in dive phase
-
摘要:
针对多枚高超声速飞行器在俯冲段协同攻击一个固定目标或慢速移动目标的问题,基于有限时间理论设计了带有视线(LOS)高低角和视线方位角约束的协同制导律。首先,将俯冲段制导过程划分为横向和纵向2个方向;其次,在纵向视线方向,将所有参与攻击的飞行器与邻居间的相对位置差值和视线速度差值作为误差项引入制导律;最后,为实现横向和纵向的视线角收敛,设计有限时间滑模制导律,并设计自适应干扰观测器估计时变扰动的上界。通过Lyapunov函数对提出的协同制导律给出详细的有限时间收敛证明,仿真实验结果验证了所设计协同制导律的正确性和有效性。
Abstract:Focusing on the problem that multiple hypersonic vehicles in the dive phase attack a stationary target or a slowly moving target, a cooperative guidance law with Line-of-Sight (LOS) elevation and LOS azimuth constraint is designed based on finite-time theory. Firstly, the guidance process of the dive phase is divided into two directions: horizontal and longitudinal. Secondly, in the longitudinal LOS direction, the relative position difference and LOS velocity difference are introduced as errors into the guidance law, and the errors come from the hypersonic vehicles participating in the attack and their neighbors. Finally, in order to achieve the convergence of the horizontal and longitudinal LOS angles, the finite-time sliding mode guidance law is designed, and the upper bound of the time-varying disturbance is estimated by the designed adaptive disturbance observer. The finite-time convergence of the proposed cooperative guidance law is proved by Lyapunov function. The simulation results show that the proposed cooperative guidance law is correct and effective.
-
表 1 式(1)中符号物理含义
Table 1. Physical meaning of symbols in Eq.(1)
符号 物理含义 符号 物理含义 vi 飞行器速度 动压 m 质量 S 飞行器参考面积 αi 攻角 g 重力加速度 σi 速度方位角 re 地球半径 θi 速度倾角 hi 飞行器高度 ζi 倾侧角 ϕi 经度 CDi 阻力系数 φi 纬度 CLi 升力系数 vm 声速 表 2 三枚高超声速飞行器的初始状态
Table 2. Initial state for three hypersonic vehicles
飞行器 hi(0)/m vi(0)/(m·s-1) λdi(0)/(°) λTTi(0)/(°) θi/(°) σi/(°) ηdi/(°) ηti/(°) 1 15 000 2 100 40 4 0 35 2 1.5 2 16 000 2 300 43 5 0 40 2 2 3 15 000 2 200 38 6 0 36 2 1.5 表 3 终端高超声速飞行器状态
Table 3. Terminal status for hypersonic vehicles
飞行器 协同时间/s 制导时间/s 末速度/(m·s-1) 加速度/(m·s-2) 1 1.2 11.581 4 2 301 29.418 1 2 1.2 11.581 2 2 487 -32.613 7 3 1.2 11.581 1 2 475 19.127 7 -
[1] CHUANG C H, MORIMOTO H. Periodic optimal cruise for a hypersonic vehicle with constraints[J]. Journal of Spacecraft and Rockets, 1997, 34(2): 165-171. doi: 10.2514/2.3205 [2] PHILLIPS T H. A common aero vehicle(CAV) model, description and employment guide[R]. Arlington: Schafer Corporation for AFRL and AFSPC, 2003: 7-8. [3] 王青, 冉茂鹏, 赵洋. 基于预测校正法的高超声速飞行器再入制导[J]. 北京航空航天大学学报, 2013, 39(12): 1563-1567. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I12/1563WANG Q, RAN M P, ZHAO Y. Reentry guidance for hypersonic vehicle based on predictor-corrector method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12): 1563-1567(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I12/1563 [4] 贺从园. 高超声速飞行器再入段的最优制导[D]. 哈尔滨: 哈尔滨工业大学, 2011: 48-57. https://d.wanfangdata.com.cn/thesis/D262111HE C Y. Optimal reentry guidance for hypersonic vehicles[D]. Harbin: Harbin Institute of Technology, 2011: 48-57(in Chinese). https://d.wanfangdata.com.cn/thesis/D262111 [5] 张晓峰, 张惠平, 杨业, 等. 基于改进割线法的高超声速飞行器再入预测制导[J]. 战术导弹技术, 2016(1): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201601011.htmZHANG X F, ZHANG H P, YANG Y, et al. Improved secant method-based predictive reentry guidance for hypersonic vehicle[J]. Tactical Missile Technology, 2016(1): 56-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201601011.htm [6] ZHU J W, LIU L H, TANG G J, et al. Optimal guidance with multi-targets for hypersonic vehicle in dive phase[C]//20136th International Conference on Recent Advances in Space Technologies (RAST). Piscataway: IEEE Press, 2013: 341-346. [7] HOU D L, WANG Q, SUN X J, et al. Finite-time cooperative guidance laws for multiple missiles with acceleration saturation constraints[J]. IET Control Theory & Applications, 2015, 9(10): 1525-1535. doi: 10.1049/iet-cta.2014.0443 [8] 刁兆师, 单家元. 带末端攻击角约束连续有限时间稳定制导律[J]. 宇航学报, 2014, 35(10): 1141-1149. doi: 10.3873/j.issn.1000-1328.2014.10.006DIAO Z S, SHAN J Y. Continuous finite-time stabilization guidance law for terminal impact angle constrained flight trajectory[J]. Journal of Astronautics, 2014, 35(10): 1141-1149(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.10.006 [9] 宋俊红, 宋申民, 徐胜利. 一种拦截机动目标的多导弹协同制导律[J]. 宇航学报, 2016, 37(12): 1306-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201612005.htmSONG J H, SONG S M, XU S L. A cooperative guidance law for multiple missiles to intercept maneuvering target[J]. Journal of Astronautics, 2016, 37(12): 1306-1314(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201612005.htm [10] 宋俊红, 宋申民, 徐胜利. 带有攻击角约束的多导弹协同制导律[J]. 中国惯性技术学报, 2016, 24(4): 554-560. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201604023.htmSONG J H, SONG S M, XU S L. Cooperative guidance law for multiple missiles with impact angle constraints[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 554-560(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201604023.htm [11] 赵世钰, 周锐, 魏晨. 具有终端角度和终端时间约束的闭环制导律及其可行性分析(英文)[J]. 宇航学报, 2009, 30(3): 1064-1072. doi: 10.3873/j.issn.1000-1328.2009.03.039ZHAO S Y, ZHOU R, WEI C. Design and feasibility analysis of a closed-form guidance law with both impact angle and time constraints[J]. Journal of Astronautics, 2009, 30(3): 1064-1072(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.03.039 [12] LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310. doi: 10.1109/TAES.2007.357135 [13] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449. doi: 10.1109/TCST.2011.2169795 [14] ZHOU J L, YANG J Y. Distributed guidance law design for cooperative simultaneous attacks with multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2439-2447. doi: 10.2514/1.G001609 [15] LYU T, LI C J, GUO Y N, et al. Three-dimensional finite-time cooperative guidance for multiple missiles without radial velocity measurements[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1294-1304. doi: 10.1016/j.cja.2018.12.005 [16] DONG X W, XIANG J, HAN L, et al. Distributed time-varying formation tracking analysis and design for second-order multi-agent systems[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2): 277-289. doi: 10.1007%2Fs10846-016-0421-5 [17] TOMIC S, BEKO M, DINIS R, et al. Distributed RSS-based localization in wireless sensor networks using convex relaxation[C]//2014 International Conference on Computing, Networking and Communications (ICNC). Piscataway: IEEE Press, 2014: 853-857. [18] SHI P, SHEN Q K. Cooperative control of multi-agent systems with unknown state-dependent controlling effects[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(3): 827-834. doi: 10.1109/TASE.2015.2403261 [19] 姚辉, 席建祥, 王成, 等. 二阶多智能体系统自抗扰编队跟踪与避撞控制[J]. 北京航空航天大学学报, 2020, 46(5): 960-977. doi: 10.13700/j.bh.1001-5965.2019.0359YAO H, XI J X, WANG C, et al. Active disturbance rejection based formation tracking and collision avoidance control for second-order multi-agent system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 960-977(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0359 [20] YAO H, WU J Y, XI J X, et al. Active disturbance rejection controller based time-varying formation tracking for second-order multi-agent systems with external disturbances[J]. IEEE Access, 2019, 7: 153317-153326. doi: 10.1109/ACCESS.2019.2948377 [21] SI Y J, SONG S M. Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1985-2003. doi: 10.1016/j.cja.2017.04.009 [22] HE S M, LIN D F. Adaptive nonsingular sliding mode based guidance law with terminal angular constraint[J]. International Journal of Aeronautical and Space Sciences, 2014, 15(2): 146-152. doi: 10.5139/IJASS.2014.15.2.146 [23] SUN S, ZHOU D, HOU W T. A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25(1): 132-137. doi: 10.1016/j.ast.2011.12.016 [24] ZHANG W J, DU X, XIA Q L. A three-dimensional cooperative guidance law based on consensus theory for maneuvering targets[J]. Mathematical Problems in Engineering, 2019, 2019: 1-11. https://ideas.repec.org/a/hin/jnlmpe/2120745.html [25] 谭诗利, 雷虎民, 王斌. 高超声速目标拦截含攻击角约束的协同制导律[J]. 北京理工大学学报, 2019, 39(6): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201906008.htmTAN S L, LEI H M, WANG B. Cooperative guidance law for hypersonic targets with constrained impact angle[J]. Transactions of Beijing Institute of Technology, 2019, 39(6): 597-602(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201906008.htm [26] SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Smooth second-order sliding modes: Missile guidance application[J]. Automatica, 2007, 43(8): 1470-1476. doi: 10.1016/j.automatica.2007.01.008 [27] LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003, 76(9-10): 924-941. doi: 10.1080/0020717031000099029 [28] BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transactions on Automatic Control, 1998, 43(5): 678-682. doi: 10.1109/9.668834 [29] 刘金琨. 滑模变结构控制MATLAB仿真: 基本理论与设计方法[M]. 3版. 北京: 清华大学出版社, 2015: 24-25.LIU J K. Sliding mode control design and MATLAB simulation: The basic theory and design method[M]. 3rd ed. Beijing: Tsinghua University Press, 2015: 24-25(in Chinese). [30] HONG Y, HUANG J, XU Y S. On an output feedback finite-time stabilization problem[J]. IEEE Transactions on Automatic Control, 2001, 46(2): 305-309. doi: 10.1109/9.905699 [31] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766. doi: 10.1137/S0363012997321358 [32] YU S H, YU X H, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964. doi: 10.1016/j.automatica.2005.07.001