Investigation on aeroacoustic of tandem double cylinders by K-FWH acoustic analogy method
-
摘要:
为了研究串列双圆柱的气动噪声与大尺度涡脱落之间的关系,采用大涡模拟并结合K-FWH方程的方法进行研究。采用标准算例的实验结果对数值模拟方法进行了验证,证实了壁面自适应局部涡黏(WALE)大涡模拟模型结合基于K-FWH方程的声比拟方法能够较好地预测不同频率下的噪声谱密度。数值模拟结果表明:上下游圆柱的涡脱落频率相同,大尺度涡呈现反相位脱落。上游圆柱表面平均阻力系数大于下游圆柱,而下游圆柱表面的压力脉动更为剧烈。双圆柱绕流的气动噪声来源主要为偶极子噪声(包括柱体表面瞬时压强及其时间导数),其中瞬时压强的时间导数是主要的声压组成部分。在此基础上,对某一观测点的瞬时声压及其分解项之间的物理关联进行了研究。观测点的瞬时声压主要由下游圆柱产生的声压主导。由于上游涡脱落对下游圆柱的涡脱落的影响,导致下游升力系数频谱及观测点总噪声频谱呈现次级峰的现象。此外,通过希尔伯特变换发现观测点的声压脉动值不受上下游旋涡脱落的相位差影响。研究结果能为后续降低双圆柱气动噪声的研究做出贡献,给工程降噪问题提供参考。
Abstract:To study the intrinsic relation between the aerodynamic noise of tandem double cylinders and the large-scale vortex shedding behavior, we carry out large eddy simulations combined with the K-FWH equation. Firstly, the high-fidelity of the numerical treatment is verified by a comparison with the corresponding experimental results, and it has been proved that the combination of Wall Adaptive Local Eddy (WALE) viscosity model and K-FWH equation can accurately predict the distribution of noise spectrum density under different frequencies. The numerical results show that the vortex shedding frequencies of the upstream and downstream cylinders are the exactly same and the large-scale vortex shedding prove to be antiphase shedding. The mean surface drag coefficient of the upstream cylinder is larger than that of the downstream cylinder, but the pressure fluctuations on the downstream cylindrical surface are much more significant. The main contribution of the aerodynamic noise generated by flow around tandem cylinders is the dipole noise term (i.e. effects of the instantaneous pressure on the cylinder surface and the time derivative of the pressure), in which the time derivative of instantaneous pressure is the dominant component of sound pressure. The physical correlation between the instantaneous sound pressure and the lift and drag forces at a selected observation point is also explored. It is shown that the instantaneous sound pressure is mainly dominated by the sound pressure generated by the downstream cylinder. Owing to the influence of the upstream vortex shedding on the downstream cylinder vortex shedding, the downstream lift coefficient spectrum and the total noise spectrum exhibit discernable secondary peaks. Furthermore, by the Hilbert transform, it is found that the acoustic pressure strength at the observation point is not affected by the phase difference of the upstream and downstream vortex shedding. This research contributes to the understanding of the reduction of the aerodynamic noise of tandem double cylinders and sheds light on the engineering noise reduction.
-
Key words:
- tandem double cylinders /
- aerodynamic noise /
- large eddy simulation /
- K-FWH equation /
- vortex shedding
-
表 1 上下游圆柱气动特性统计结果
Table 1. Statistic results of aerodynamic properties for upstream and downstream cylinders
表 2 相关项之间的相关系数
Table 2. Correlation coefficients between related terms
声压 0.119 3 0.993 9 N/A N/A -0.149 4 N/A N/A 0.164 8 0.988 1 0.936 5 -
[1] 乔渭阳, 许开富, 武兆伟, 等. 大型客机起飞着陆过程噪声辐射特性对比分析[J]. 航空学报, 2008, 29(3): 534-541. doi: 10.3321/j.issn:1000-6893.2008.03.003QIAO W Y, XU K F, WU Z W, et al. Noise radiation of large-scale commercial aircraft in take-off and landing[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 534-541(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.003 [2] CHOW L C, MAU K, REMY H. Landing gears and high lift devices airframe noise research[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Reston: AIAA, 2002. [3] LOCKARD D, KHORRAMI M, CHOUDHARI M, et al. Tandem cylinder noise predictions[C]//13th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2007: 3450. [4] JENKINS L, KHORRAMI M, CHOUDHARI M, et al. Characterization of unsteady flow structures around tandem cylinders for component interaction studies in airframe noise[C]//11th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2005. [5] JENKINS L, NEUHART D, MCGINLEY C, et al. Measurements of unsteady wake interference between tandem cylinders[C]//36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006. [6] HUTCHESON F V, BROOKS T F. Noise radiation from single and multiple rod configurations[J]. International Journal of Aeroacoustics, 2012, 11(3-4): 291-333. doi: 10.1260/1475-472X.11.3-4.291 [7] FARASSAT F, CASPER J. Towards an airframe noise prediction methodology: Survey of current approaches[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. [8] BRōS G A, FREED D, WESSELS M, et al. Flow and noise predictions for the tandem cylinder aeroacoustic benchmarka[J]. Physics of Fluids, 2012, 24(3): 036101. doi: 10.1063/1.3685102 [9] PAPAIOANNOU G V, YUE D K P, TRIANTAFYLLOU M S, et al. Three-dimensionality effects in flow around two tandem cylinders[J]. Journal of Fluid Mechanics, 2006, 558: 387. doi: 10.1017/S0022112006000139 [10] 刘敏, 刘飞, 胡亚涛, 等. 三维串列双圆柱绕流气动流场及声场模拟[J]. 工程热物理学报, 2008, 29(3): 403-406. doi: 10.3321/j.issn:0253-231X.2008.03.011LIU M, LIU F, HU Y T, et al. Aerodynamics and aeroacoustics numerical simulation of flow past two circular cylinders in tandem arrangements[J]. Journal of Engineering Thermophysics, 2008, 29(3): 403-406(in Chinese). doi: 10.3321/j.issn:0253-231X.2008.03.011 [11] 赵良举, 杨南奇, 吴朵, 等. 横掠二维串列双圆柱绕流气动噪声的数值模拟[J]. 重庆大学学报, 2009, 32(8): 943-949. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200908017.htmZHAO L J, YANG N Q, WU D, et al. Aeroacoustics numerical simulation of flow past tow-dimensional two circular cylinders in tandem arrangements[J]. Journal of Chongqing University, 2009, 32(8): 943-949(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200908017.htm [12] 龙双丽, 聂宏, 许鑫. 不同雷诺数下圆柱绕流气动噪声数值模拟[J]. 声学技术, 2011, 30(2): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201102001.htmLONG S L, NIE H, XU X. Numerical simulation of noise induced by flow around a cylinder at different Reynolds number[J]. Technical Acoustics, 2011, 30(2): 111-116(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201102001.htm [13] 余雷, 宋文萍, 韩忠华, 等. 基于混合RANS/LES方法与FW-H方程的气动声学计算研究[J]. 航空学报, 2013, 34(8): 1795-1805. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308006.htmYU L, SONG W P, HAN Z H, et al. Aeroacoustic noise prediction using hybrid RANS/LES method and FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1795-1805(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308006.htm [14] 宁方立, 王善景, 马尧, 等. 串联圆柱体绕流气动噪声三维数值仿真[J]. 机械制造, 2014, 52(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG201401009.htmNING F L, WANG S J, MA Y, et al. Aeroacoustics numerical simulation of flow past three-dimensional two circular cylinders in tandem arrangements[J]. Machinery, 2014, 52(1): 21-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG201401009.htm [15] 高威, 陈国勇. 串列双圆柱绕流的气动噪声特性分析[J]. 计算机辅助工程, 2018, 27(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201804009.htmGAO W, CHEN G Y. Characteristic analysis on aerodynamical noise of flow around tandem double cylinders[J]. Computer Aided Engineering, 2018, 27(4): 41-46(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201804009.htm [16] 周凯, 王震, 陈维山, 等. 格子Boltzmann方法在串列双圆柱绕流数值模拟中的应用研究[J]. 船舶力学, 2018, 22(2): 144-155. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201802003.htmZHOU K, WANG Z, CHEN W S, et al. Application of lattice Boltzmann method in flow past two cylinders in tandem arrangement[J]. Journal of Ship Mechanics, 2018, 22(2): 144-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201802003.htm [17] DU B X, ZHANG W P, MING P J. Numerical simulation of flow-induced noise of two circular cylinders in tandem and side-by-side arrangements using a viscous/acoustic splitting method[J]. Journal of Ship Mechanics, 2019, 23(9): 1122-1138. http://en.cnki.com.cn/Article_en/CJFDTotal-CBLX201909009.htm [18] 葛明明, 王圣业, 王光学, 等. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟[J]. 物理学报, 2019, 68(20): 190-202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201920021.htmGE M M, WANG S Y, WANG G X, et al. Aeroacoustic simulation of the high-lift airfoil using hybrid Reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method[J]. Acta Physica Sinica, 2019, 68(20): 190-202(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201920021.htm [19] 周盼, 张权, 率志君, 等. 离心泵进水口形式设计及其对振动噪声的影响[J]. 排灌机械工程学报, 2015, 33(1): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201501006.htmZHOU P, ZHANG Q, SHUAI Z J, et al. Inlet design and its influence on vibration and noise of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 16-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201501006.htm [20] 蔡晓彤, 施卫东, 张德胜, 等. 基于直接边界元法的潜水排污泵内流噪声数值模拟[J]. 排灌机械工程学报, 2018, 36(12): 1264-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201812011.htmCAI X T, SHI W D, ZHANG D S, et al. Numerical simulation of internal flow-induced noise in submersible sewage pump based on the direct boundary element method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(12): 1264-1269(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201812011.htm [21] 余昊谦, 王洋, 韩亚文, 等. 旋涡自吸泵流致噪声模拟及降噪[J]. 排灌机械工程学报, 2019, 37(4): 302-306. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201904006.htmYU H Q, WANG Y, HAN Y W, et al. Numerical study on flow-induced noise and noise reduction of self-priming vortex pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(4): 302-306(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201904006.htm [22] DI FRANCESCANTONIO P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4): 491-509. https://www.sciencedirect.com/science/article/abs/pii/S0022460X96908433 [23] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. https://www.mendeley.com/catalogue/4c9b848a-b764-389c-9c84-9ecb098ed47a/ [24] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342. https://ui.adsabs.harvard.edu/abs/1969RSPTA.264..321F/abstract [25] LOCKARD D. Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I Workshop[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.