-
摘要:
悬链线问题是一类经典又多变的力学问题,其曲线构形指导着桥梁等工程应用的结构设计。为了求得结构特征或载荷特征不同的悬链线的变形,提出了一种基于传递矩阵法思想的、通用性较好的求解方法。首先,提炼出悬链力学模型,将悬链顺序划分成若干简单单元,结合单元力平衡和本构-几何关系解得单元特征函数方程组,顺序嵌套单元特征函数方程组获得整体特征函数方程组;然后,使用离散Newton迭代法对该非线性方程组进行求解,获得悬链的受力和变形;最后,算例验证了结果与解析解的一致性。函数传递法对具有复杂结构特征和载荷特征的悬链线问题有很好的适用性,对求解其他可划分为若干首尾相接结构单元的结构系统的广义变形也适用。
Abstract:Catenary problem is a kind of classical and changeable mechanical problem, whose curve configuration guides the structural design of engineering applications such as bridge. In order to obtain the deformation of catenary with different structural or load characteristics, a general method based on transfer matrix method is proposed. The catenary mechanics model is extracted, and the catenary is divided sequentially into several simple elements. The characteristic function group of element state parameters is obtained by combining element force balance and constitutive-geometry relationship. The whole characteristic function group is obtained by nesting element characteristic function group sequentially. Then the discrete Newton iterative method is used to solve the equations of nonlinear whole characteristic function group, and finally the forces and deformation of catenary are obtained. An example showed that the results were consistent with the analytical solution. The function transfer method is applicable to the catenary problems with complex structural characteristics and load characteristics, and also applicable to solving the generalized deformation of other structural systems which can be divided into several head-to-tail structural elements.
-
表 1 常见边界条件参数
Table 1. Common boundary condition parameters
边界条件 挠度 挠角 弯矩 剪力 简支 0 θx 0 Fx 自由 yx θx 0 0 弹性支承 yx θx 0 Kspringyx 表 2 悬链算例参数
Table 2. Example parameters of catenary
参数 数值 跨度Lspan/m 1.5 索链总长Lline/m 2.0 横截面圆半径Rline/m 1.0×10-3 材料密度ρ/(kg·m-3) 7 800 表 3 悬链算例结果
Table 3. Example results of catenary
解析/数值解 高低差Δy/m 索端水平拉力Fx-end/N 索端角θend/(°) 解析解 0.588 6 0.0137 8 60.96 数值解 0.589 5 0.0135 9 59.72 相对误差/% 0.15 -1.4 -2.0 -
[1] ROUTH E J. A treatise on analytical statics: With numerous examples[M]. Cambridge: Cambridge University Press, 2013. [2] 周强, 杨文兵, 杨新华. 斜拉桥索力调整在ANSYS中的实现[J]. 华中科技大学学报(城市科学版), 2005, 22(增刊): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ2005S1023.htmZHOU Q, YANG W B, YANG X H. Simulation of tensing stayed cables in ANSYS[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2005, 22(Supplement): 81-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ2005S1023.htm [3] THAI H T, KIM S E. Nonlinear static and dynamic analysis of cable structures[J]. Finite Elements in Analysis and Design, 2011, 47(3): 237-246. doi: 10.1016/j.finel.2010.10.005 [4] JAYARAMAN H B, KNUDSON W C. A curved element for the analysis of cable structures[J]. Computers and Structures, 1981, 14(3-4): 325-333. doi: 10.1016/0045-7949(81)90016-X [5] 郑平芳. 有限元中索单元的研究及应用进展[J]. 山西建筑, 2011, 37(28): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX201128026.htmZHENG P F. Research on cable element in finite element and its application progress[J]. Shanxi Architecture, 2011, 37(28): 42-43(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX201128026.htm [6] PESTEL E, LECKIE F. Matrix methods in elastomechanics[M]. New York: McGraw-Hill Book Company, 1963. [7] RUBIN S. Transmission matrices for vibration and their relation to admittance and impedance[J]. Journal of Manufacturing Science and Engineering, 1964, 86(1): 9-21. [8] 顾家柳, 丁奎元, 刘启洲, 等. 转子动力学[M]. 北京: 国防工业出版社, 1985.GU J L, DING K Y, LIU Q Z, et al. Rotordynamics[M]. Beijing: National Defense Industry Press, 1985(in Chinese). [9] 夏林林, 吴开腾. 大范围求解非线性方程组的指数同伦法[J]. 计算数学, 2014, 36(2): 215-224. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201402008.htmXIA L L, WU K T. An exponential homotopy method for nonlinear equations in large scope[J]. Mathematica Numerica Sinica, 2014, 36(2): 215-224(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201402008.htm [10] 夏林林, 户晗蕾, 吴开腾. 非线性方程组数值方法的研究进展[J]. 内江师范学院学报, 2013, 28(10): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201310004.htmXIA L L, HU H L, WU K T. Progress in the research of nonliear equations via numerical methods[J]. Journal of Neijiang Normal University, 2013, 28(10): 12-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201310004.htm [11] 颜庆津. 数值分析[M]. 3版. 北京: 北京航空航天大学出版社, 2006.YAN Q J. Numerical analysis[M]. 3rd ed. Beijing: Beihang University Press, 2006(in Chinese). [12] TAIPING H. The transfer matrix impedance coupling method for the eigensolutions of multi-spool rotor systems[J]. Journal of Vibration and Acoustics, 1988, 110(4): 468-472. doi: 10.1115/1.3269552 [13] LEE J W, LEE J Y. An exact transfer matrix expression for bending vibration analysis of a rotating tapered beam[J]. Applied Mathematical Modelling, 2018, 53: 167-188. doi: 10.1016/j.apm.2017.08.022 [14] ROSEN A, GUR O. A transfer matrix model of large deformations of curved rods[J]. Computers and Structures, 2018, 87(7-8): 467-484. [15] 王建国, 逄焕平, 李雪峰. 悬索桥线形分析的悬链线单元法[J]. 应用力学学报, 2008, 25(4): 627-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200804018.htmWANG J G, PANG H P, LI X F. Catenary cable element method for cable curve or suspension bridges[J]. Chinese Journal of Applied Mechanics, 2008, 25(4): 627-631(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200804018.htm [16] 何竞飞. 跳绳曲线的数值解及误差估计的间接判定法[J]. 中南工业大学学报, 1995, 26(4): 532-535. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD504.024.htmHE J F. The numerical solution of rope skipping curve and the indirect evaluation of its error[J]. Journal of Central South University of Technology, 1995, 26(4): 532-535(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD504.024.htm [17] 王庸禄. 对跳绳式捻股成绳机转子弓外形设计及钢丝(股)张力控制的探讨[J]. 金属制品, 1985(6): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZP198506001.htmWANG Y L. Discussion on shape design of rotor bow and tension control of steel wire (strand) of rope skipping stranding machine[J]. Metal Products, 1985(6): 8-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSZP198506001.htm [18] 罗雯瑛. 有限到无限: 基于离散静力平衡推导悬链线方程和梁位移方程[J]. 力学与实践, 2020, 42(1): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS202001015.htmLUO W Y. From finiteness to infinity: Deriving the catenary equation and the beam displacement equation based on the discrete static equilibrium model[J]. Mechanics in Engineering, 2020, 42(1): 85-91(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS202001015.htm