留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区域划分与标准时间的手部异常行为检测

梁宇宁 王绍华 金向明 周栋

梁宇宁, 王绍华, 金向明, 等 . 基于区域划分与标准时间的手部异常行为检测[J]. 北京航空航天大学学报, 2021, 47(10): 1969-1979. doi: 10.13700/j.bh.1001-5965.2020.0369
引用本文: 梁宇宁, 王绍华, 金向明, 等 . 基于区域划分与标准时间的手部异常行为检测[J]. 北京航空航天大学学报, 2021, 47(10): 1969-1979. doi: 10.13700/j.bh.1001-5965.2020.0369
LIANG Yuning, WANG Shaohua, JIN Xiangming, et al. Abnormal hand behavior detection based on area division and standard time[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1969-1979. doi: 10.13700/j.bh.1001-5965.2020.0369(in Chinese)
Citation: LIANG Yuning, WANG Shaohua, JIN Xiangming, et al. Abnormal hand behavior detection based on area division and standard time[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1969-1979. doi: 10.13700/j.bh.1001-5965.2020.0369(in Chinese)

基于区域划分与标准时间的手部异常行为检测

doi: 10.13700/j.bh.1001-5965.2020.0369
详细信息
    通讯作者:

    周栋, E-mail: zhoudong@buaa.edu.cn

  • 中图分类号: TP391

Abnormal hand behavior detection based on area division and standard time

More Information
  • 摘要:

    通过监控视频自动检测操作任务中手部异常行为,能够预防人因差错,提高人因可靠性。针对手部操作任务运动特征不明显、常用异常检测和手势识别方法不适用的问题,提出基于区域划分与标准时间的手部异常行为检测技术。使用基于椭圆模型的肤色检测方法,检测视频中手部形心位置;提出工作区域划分方法,根据手部形心在操作过程中所处区域的不同,将连续操作分割为单元任务,获得各段单元任务的起止时间和持续时长;以正常工作时间为标准,对超出标准时间范围的单元任务提出异常警告。实验表明:所提方法的单元任务分割正确率高于93%,异常行为检测率高于86%,能够有效检测手部异常行为,为人为差错的监测与预警提供技术支持。

     

  • 图 1  基于椭圆模型的肤色检测方法

    Figure 1.  Skin color detection method based on ellipse model

    图 2  开运算处理手部图像的过程

    Figure 2.  Steps for processing hand images by open operation

    图 3  利用腐蚀处理手部交叠区域的过程

    Figure 3.  Steps for eliminating overlapping parts of hands by erosion

    图 4  拼图任务中右手所处的不同区域

    Figure 4.  Different areas of right hand in puzzle task

    图 5  单元任务示意图

    Figure 5.  Schematic diagram of unit tasks

    图 6  形心分组示意图

    Figure 6.  Schematic diagram of centroids grouping

    图 7  拼图任务中的犹豫过程

    Figure 7.  Hesitation process in puzzle task

    图 8  犹豫点剔除算法流程

    Figure 8.  Flowchart of hesitant points elimination algorithm

    图 9  单元任务分割算法流程

    Figure 9.  Flowchart of unit task segmentation algorithm

    图 10  实验所用的3个案例

    Figure 10.  Three cases used in experiment

    图 11  基于区域划分与标准时间的手部异常行为检测流程

    Figure 11.  Flowchart of abnormal hand behavior detection based on area division and standard time

    表  1  实验结果

    Table  1.   Results of experiment

    参数 案例1 案例2 案例3
    视频时长 00:06:04 00:11:13 01:01:50
    实际异常行为数量 11 5 15
    算法判断异常行为总数 14 6 13
    算法正确判断异常数量 10 5 13
    算法分割正确率/% 95.83 93.75 95.65
    异常行为检测率/% 90.91 100 86.67
    下载: 导出CSV

    表  2  不同检测方法的检测率对比

    Table  2.   Comparison of detection rates of different detection methods

    方法 检测率/%
    本文方法 90.91
    基于手部轨迹识别[24] 80.00
    基于姿态-动作模型[25] 70~90
    基于手部图像特征分析[26] 80~85
    下载: 导出CSV
  • [1] TAO J, QIU D, YANG F, et al. A bibliometric analysis of human reliability research[J]. Journal of Cleaner Production, 2020, 260: 121041. doi: 10.1016/j.jclepro.2020.121041
    [2] 朱旭东, 刘志镜. 基于主题隐马尔科夫模型的人体异常行为识别[J]. 计算机科学, 2012, 39(3): 251-255. doi: 10.3969/j.issn.1002-137X.2012.03.057

    ZHU X D, LIU Z J. Human abnormal behavior recognition based on topic hidden Markov model[J]. Computer Science, 2012, 39(3): 251-255(in Chinese). doi: 10.3969/j.issn.1002-137X.2012.03.057
    [3] YI X, DONG H, DONG X, et al. Human reliability analysis method on armored vehicle system considering error correction[J]. Journal of Shanghai Jiaotong University (Science), 2016, 21(4): 472-477. doi: 10.1007/s12204-016-1749-5
    [4] 李鹏程, 陈国华, 张力, 等. 人因可靠性分析技术的研究进展与发展趋势[J]. 原子能科学技术, 2011, 45(3): 329-340. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201103015.htm

    LI P C, CHEN G H, ZHANG L, et al. Research review and development trends of human reliability analysis technique[J]. Atomic Energy Science and Technology, 2011, 45(3): 329-340(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201103015.htm
    [5] LIU P, QIU Y, HU J, et al. Expert judgments for performance shaping factors' multiplier design in human reliability analysis[J]. Reliability Engineering and System Safety, 2020, 194: 106343. doi: 10.1016/j.ress.2018.12.022
    [6] BEN MABROUK A, ZAGROUBA E. Abnormal behavior recognition for intelligent video surveillance systems: A review[J]. Expert Systems with Applications, 2018, 91: 480-491. doi: 10.1016/j.eswa.2017.09.029
    [7] ZHU B, XIE Y, LUO G, et al. An abnormal behavior detection method using optical flow model and openpose[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(5): 28-34.
    [8] LAZARIDIS L, DIMOU A, DARAS P. Abnormal behavior detection in crowded scenes using density heatmaps and optical flow[C]//Proceedings of the European Signal Processing Conference, 2018: 2074-2078.
    [9] MABROUK A B, ZAGROUBA E. Spatio-temporal feature using optical flow based distribution for violence detection[M]. Amsterdam: Elsevier Science, 2017.
    [10] MIN W, ZOU S, LI J. Human fall detection using normalized shape aspect ratio[J]. Multimedia Tools and Applications, 2019, 78(11): 14331-14353. doi: 10.1007/s11042-018-6794-7
    [11] WANG J, XU Z. Crowd anomaly detection for automated video surveillance[C]//Proceedings of the IET Seminar Digest, 2015: 15382040.
    [12] LI K, HUANG H, ZHENG Z, et al. Research of crowed abnormal behavior detection technology based on trajectory gradient[C]//International Symposium on Intelligence Computation and Applications, 2018: 486-500.
    [13] WANG T, LI Y, HU J, et al. A survey on vision-based hand gesture recognition[C]//1st International Conference on Smart Multimedia, 2018: 219-231.
    [14] XIA Z, LEI Q, YANG Y, et al. Vision-based hand gesture recognition for human-robot collaboration: A survey[C]//Proceedings of the 20195th International Conference on Control, Automation and Robotics, 2019: 198-205.
    [15] 郭全利. 动态手势识别关键算法研究[D]. 锦州: 辽宁工业大学, 2018.

    GUO Q L. Research on key algorithms of dynamic gesture recognition[D]. Jinzhou: Liaoning University of Technology, 2018(in Chinese).
    [16] 张兆杨, 杨高波, 刘志. 视频对象分割提取的原理与应用[M]. 北京: 科学出版社, 2009.

    ZHANG Z Y, YANG G B, LIU Z. Principle and application of video object segmentation and extraction[M]. Beijing: Science Press, 2009(in Chinese).
    [17] ZIVKOVIC Z, HEIJDEN F V D. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780. doi: 10.1016/j.patrec.2005.11.005
    [18] ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition, 2004: 28-31.
    [19] SUTTON R S. Learning to predict by the methods of temporal differences[J]. Machine Learning, 1988, 3(1): 9-44.
    [20] HSU R L, ABDEL-MOTTALEB M, JAIN A K. Face detection in color images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 696-706. doi: 10.1109/34.1000242
    [21] 孙燮华. 数字图像处理: 原理与算法[M]. 北京: 机械工业出版社, 2010.

    SUN X H. Digital image processing: Principle and algorithm[M]. Beijing: China Machine Press, 2010(in Chinese).
    [22] 易树平, 郭伏. 基础工业工程[M]. 北京: 机械工业出版社, 2014.

    YI S P, GUO F. Basic industrial engineering[M]. Beijing: China Machine Press, 2014(in Chinese).
    [23] 邱慧慧. 面向离散制造业的标准时间制定系统研究[D]. 济南: 山东大学, 2009.

    QIU H H. Research on discrete manufacturing industries-oriented standard time formulation system[D]. Jinan: Shandong University, 2009(in Chinese).
    [24] 陈琼, 鱼滨. 基于手部轨迹识别的ATM智能视频监控系统[J]. 计算机工程, 2012, 38(11): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201211044.htm

    CHEN Q, YU B. Intelligent video surveillance system of automatic teller machine based on hand trajectory recognition[J]. Computer Engineering, 2012, 38(11): 143-146(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201211044.htm
    [25] 陈若愚. 超市中人体异常行为识别方法的研究[D]. 长沙: 国防科学技术大学, 2013.

    CHEN R Y. A research on abnormal behavior detection methods in supermarket[D]. Changsha: National University of Defense Technology, 2013(in Chinese).
    [26] 刘刚. 基于手部图像特征分析的超市中异常行为的检测[D]. 成都: 西华大学, 2017.

    LIU G. Detection of abnormal behavior in supermarket based on hand image feature analysis[D]. Chengdu: Xihua University, 2017(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  179
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 录用日期:  2020-10-09
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答