留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于SD-ICA的卫星电池健康状态估计方法

陈景龙 王日新 李玉庆 徐敏强 黄文虎

陈景龙, 王日新, 李玉庆, 等 . 一种基于SD-ICA的卫星电池健康状态估计方法[J]. 北京航空航天大学学报, 2021, 47(10): 2058-2067. doi: 10.13700/j.bh.1001-5965.2020.0376
引用本文: 陈景龙, 王日新, 李玉庆, 等 . 一种基于SD-ICA的卫星电池健康状态估计方法[J]. 北京航空航天大学学报, 2021, 47(10): 2058-2067. doi: 10.13700/j.bh.1001-5965.2020.0376
CHEN Jinglong, WANG Rixin, LI Yuqing, et al. A state of health estimation method for satellite battery based on smooth and discharge applicative increment capacity analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2058-2067. doi: 10.13700/j.bh.1001-5965.2020.0376(in Chinese)
Citation: CHEN Jinglong, WANG Rixin, LI Yuqing, et al. A state of health estimation method for satellite battery based on smooth and discharge applicative increment capacity analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2058-2067. doi: 10.13700/j.bh.1001-5965.2020.0376(in Chinese)

一种基于SD-ICA的卫星电池健康状态估计方法

doi: 10.13700/j.bh.1001-5965.2020.0376
基金项目: 

哈尔滨工业大学关键实验室开放基金 HIT.KLOF.2018.076

哈尔滨工业大学关键实验室开放基金 HIT.KLOF.2018.074

详细信息
    通讯作者:

    李玉庆, E-mail: bradley@hit.edu.cn

  • 中图分类号: V19

A state of health estimation method for satellite battery based on smooth and discharge applicative increment capacity analysis

Funds: 

Key Laboratory Opening Funding of Harbin Institute of Technology HIT.KLOF.2018.076

Key Laboratory Opening Funding of Harbin Institute of Technology HIT.KLOF.2018.074

More Information
  • 摘要:

    针对容量增量分析(ICA)法应用在卫星电池的健康状态(SOH)估计中存在较大误差的问题,提出了基于带平滑处理并使用放电数据的容量增量分析(SD-ICA)的电池健康状态估计方法。首先,利用光滑样条函数的拟合结果具有二阶导连续的特性,对低分辨率的遥测数据进行平滑处理,从而提高了计算结果的准确性。其次,针对ICA必须使用微小电流放电数据的限制,推导出有负载条件下的容量增量(IC)计算方法,降低了对卫星电池放电工况的要求。最后,利用IC曲线的第一特征点(FOI1)与电池容量的关系,对卫星电池的健康状态进行估计。经验证,所提方法具有对数据分辨率要求低、不需要增加电池工况、计算简便等优势,可以准确地从卫星遥测数据中估计电池健康状态。研究成果在卫星电池的健康管理和任务规划中具有重要的应用价值。

     

  • 图 1  GEO卫星电池组放电电流和电池组端电压

    Figure 1.  GEO satellite battery discharge current and battery pack terminal voltage

    图 2  LEO卫星电池组放电电流和电池组端电压

    Figure 2.  LEO satellite battery discharge current and battery pack terminal voltage

    图 3  IC曲线及FOI1和FOI2

    Figure 3.  IC curve and FOI1 & FOI2

    图 4  电池内阻退化趋势

    Figure 4.  Aging trend of battery resistance

    图 5  电池测试系统

    Figure 5.  Battery test system

    图 6  实测电压值与重采样模拟遥测值

    Figure 6.  Voltage from measurement and resampling

    图 7  测量数据的IC计算结果

    Figure 7.  IC calculation results from measurement data

    图 8  重采样后ICA法和Gau-ICA法计算结果

    Figure 8.  Results of ICA and Gau-ICA from resampling data

    图 9  重采样后MA-ICA法、SD-ICA法和Model-ICA法计算结果

    Figure 9.  Results of MA-ICA, SD-ICA, and model-ICA from resampling data

    图 10  重采样数据增加采样间隔后计算结果

    Figure 10.  Calculation results from large-interval resampling data

    图 11  电池衰退对IC曲线的影响

    Figure 11.  Impact of battery aging on IC curves

    图 12  FOI1的变化趋势与电池容量的退化趋势

    Figure 12.  Variation of FOI1 and degradation of battery capacity

    图 13  FOI1与电池容量的关系

    Figure 13.  Relationship between FOI1 and battery capacity

    图 14  负载对IC值的影响

    Figure 14.  Impact of load on IC value

    图 15  电池衰退对仿遥测数据的IC曲线的影响

    Figure 15.  Impact of battery aging on IC curves

    图 16  平衡态FOI1与带负载FOI1的关系

    Figure 16.  FOI1 relationship between equilibrium state and loaded state

    图 17  基于SD-ICA法的估计结果

    Figure 17.  Estimation results based on SD-ICA method

    图 18  基于SD-ICA法的SOH估计误差

    Figure 18.  SOH estimation error based on SD-ICA method

    表  1  电池测试仪主要参数

    Table  1.   Main parameters of battery tester

    参数 数值
    通道数 8
    充放电电流/A 0~5
    充放电电压/V 0~5
    电流分辨率/mA 0.1
    电压分辨率/mA 0.1
    温度分辨率/℃ 0.1
    最小记录间隔/s 0.1
    下载: 导出CSV

    表  2  IC值计算误差

    Table  2.   Calculation error of IC

    误差 SD-ICA法 ICA法 MA-ICA法 Gau-ICA法 Model-ICA法
    MAE 0.009 7 0.150 9 0.071 1 0.032 1 0.129 5
    RMSE 0.017 7 0.191 2 0.111 7 0.052 1 0.194 5
    下载: 导出CSV
  • [1] 王东, 李国欣, 潘延林. 锂离子电池技术在航天领域的应用[J]. 上海航天, 2000, 17(1): 54-58. doi: 10.3969/j.issn.1006-1630.2000.01.011

    WANG D, LI G X, PAN Y L. The technology of lithium ion batteries for spaccraft application[J]. Aerospace Shanghai, 2000, 17(1): 54-58(in Chinese). doi: 10.3969/j.issn.1006-1630.2000.01.011
    [2] BERECIBAR M, DEVRIENDT F, DUBARRY M, et al. Online state of health estimation on NMC cells based on predictive analytics[J]. Journal of Power Sources, 2016, 320: 239-250. doi: 10.1016/j.jpowsour.2016.04.109
    [3] 罗萍, 谭玲生, 王捷, 等. 锂离子蓄电池组在GEO卫星上的应用[J]. 电源技术, 2018, 42(1): 1-2. doi: 10.3969/j.issn.1002-087X.2018.01.001

    LUO P, TAN L S, WANG J, et al. Application of Li-ion battery in GEO satellite[J]. Chinese Journal of Power Sources, 2018, 42(1): 1-2(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.01.001
    [4] BERECIBAR M, GANDIAGA I, VILLARREAL I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56(1): 572-587. https://www.sciencedirect.com/science/article/abs/pii/S1364032115013076
    [5] LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018, 212(15): 1178-1190. http://www.sciencedirect.com/science/article/pii/S0306261918300114
    [6] CUI Y, ZUO P, DU C, et al. State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method[J]. Energy, 2018, 144: 647-656. doi: 10.1016/j.energy.2017.12.033
    [7] CHEN L, LV Z, LIN W, et al. A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity[J]. Measurement, 2018, 116(1): 586-595. http://www.sciencedirect.com/science/article/pii/S0263224117307248
    [8] EROL S, ORAZEM M E. The influence of anomalous diffusion on the impedance response of LiCoO2|C batteries[J]. Journal of Power Sources, 2015, 293(20): 57-64. https://www.sciencedirect.com/science/article/abs/pii/S0378775315009283
    [9] HAN X, OUYANG M, LU L, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251(1): 38-54. https://www.sciencedirect.com/science/article/abs/pii/S0378775313018569
    [10] DUBARRY M, TRUCHOT C, CUGNET M L, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part Ⅰ: Initial characterizations[J]. Journal of Power Sources, 2011, 196(23): 10328-10335. doi: 10.1016/j.jpowsour.2011.08.077
    [11] WENG C, CUI Y, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235(1): 36-44. https://www.sciencedirect.com/science/article/abs/pii/S0378775313002668
    [12] ZHENG L, ZHU J, LU D D, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150: 759-769. doi: 10.1016/j.energy.2018.03.023
    [13] LI X, JIANG J, WANG L Y, et al. A capacity model based on charging process for state of health estimation of lithium ion batteries[J]. Applied Energy, 2016, 177(1): 537-543. https://www.sciencedirect.com/science/article/abs/pii/S0306261916307140
    [14] FENG X N, LI J, OUYANG M, et al. Using probability density function to evaluate the state of health of lithium-ion batteries[J]. Journal of Power Sources, 2013, 232(18): 209-218. https://www.sciencedirect.com/science/article/abs/pii/S0378775313000414
    [15] WENG C H, SUN J, PENG H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources, 2014, 258(14): 228-237. https://www.sciencedirect.com/science/article/abs/pii/S0378775314002092
    [16] LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373(1): 40-53.
    [17] FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 29(1): 101329. http://www.sciencedirect.com/science/article/pii/S2352152X19308175?via%3Dihub
    [18] HE J, BIAN X, LIU L, et al. Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 29: 101400. doi: 10.1016/j.est.2020.101400
    [19] ZHANG S, ZHAI B, GUO X, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26: 100951. doi: 10.1016/j.est.2019.100951
    [20] BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells[J]. Journal of Power Sources, 2005, 139(1-2): 295-303. doi: 10.1016/j.jpowsour.2004.07.021
    [21] ZENG G, BAI Z, HUANG P, et al. Thermal safety study of Li-ion batteries under limited overcharge abuse based on coupled electrochemical-thermal model[J]. International Journal of Energy Research, 2020, 44(5): 3607-3625. doi: 10.1002/er.5125
    [22] CHEN J, WANG R, LI Y, et al. A simplified extension of physics-based single particle model for dynamic discharge current[J]. IEEE Access, 2019, 7: 186217-186227. doi: 10.1109/ACCESS.2019.2961509
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  750
  • HTML全文浏览量:  241
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-31
  • 录用日期:  2020-08-14
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答