留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体火箭冲压发动机设计点性能优化分析

李新田 陈新民 陈世立 许诺 蔡强

李新田, 陈新民, 陈世立, 等 . 固体火箭冲压发动机设计点性能优化分析[J]. 北京航空航天大学学报, 2021, 47(10): 1989-1995. doi: 10.13700/j.bh.1001-5965.2020.0378
引用本文: 李新田, 陈新民, 陈世立, 等 . 固体火箭冲压发动机设计点性能优化分析[J]. 北京航空航天大学学报, 2021, 47(10): 1989-1995. doi: 10.13700/j.bh.1001-5965.2020.0378
LI Xintian, CHEN Xinmin, CHEN Shili, et al. Optimal analysis of design point performance of ducted rocket[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1989-1995. doi: 10.13700/j.bh.1001-5965.2020.0378(in Chinese)
Citation: LI Xintian, CHEN Xinmin, CHEN Shili, et al. Optimal analysis of design point performance of ducted rocket[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1989-1995. doi: 10.13700/j.bh.1001-5965.2020.0378(in Chinese)

固体火箭冲压发动机设计点性能优化分析

doi: 10.13700/j.bh.1001-5965.2020.0378
详细信息
    通讯作者:

    李新田, E-mail: lixintian@buaa.edu.cn

  • 中图分类号: V436

Optimal analysis of design point performance of ducted rocket

More Information
  • 摘要:

    针对冲压动力飞行器射程优化总体需求,提出了基于飞行器-发动机性能因子的评估方法,建立了固体火箭冲压发动机性能模型及优化设计流程,为总体与动力一体化优化设计提供了支撑。根据典型含硼贫氧推进剂性能分析结果可知,相同马赫数及余气系数下,高度对比冲的影响不明显;相同马赫数下,比冲随余气系数的增加先增加后减小;相同余气系数下,比冲随马赫数的增加而降低;飞发性能因子随马赫数、余气系数的增加先增加后降低,在一定条件下达到最大值。

     

  • 图 1  固体火箭冲压发动机截面示意图

    Figure 1.  Sectional diagram of ducted rocket

    图 2  固体火箭冲压发动机性能优化设计流程

    Figure 2.  Optimization design process of ducted rocket performance

    图 3  燃烧产物温度随空燃比变化

    Figure 3.  Combustion product temperature versus air-fuel ratio

    图 4  特征速度随空燃比变化

    Figure 4.  Characteristic velocity versus air-fuel ratio

    图 5  不同马赫数下比冲随余气系数变化(H=20 km)

    Figure 5.  Specific impulse versus excess air coefficient at different Mach numbers (H=20 km)

    图 6  不同高度下比冲随余气系数变化(Ma=3.5)

    Figure 6.  Specific impulse versus excess air coefficient at different heights (Ma=3.5)

    图 7  不同马赫数下飞发性能因子随余气系数变化(H=20 km)

    Figure 7.  Vehicle-ramjet performance factor versus excess air coefficient at different Mach numbers (H=20 km)

    图 8  不同高度下飞发性能因子随余气系数变化(Ma=3.5)

    Figure 8.  Vehicle-ramjet performance factor versus excess air coefficient at different heights (Ma=3.5)

  • [1] 鲍福廷, 黄熙君, 张振鹏, 等. 固体火箭冲压组合发动机[M]. 北京: 中国宇航出版社, 2006: 1-44.

    BAO F T, HUANG X J, ZHANG Z P, et al. Integral solid propellant ramjet rocket motor[M]. Beijing: China Astronautic Publishing House, 2006: 1-44(in Chinese).
    [2] 夏智勋, 陈斌斌, 黄利亚, 等. 固体火箭冲压发动机技术研究进展[J]. 上海航天, 2019, 36(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201906002.htm

    XIA Z X, CHEN B B, HUANG L Y, et al. Research progresses in solid rocket-ramjet engine[J]. Aerospace Shanghai, 2019, 36(6): 11-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201906002.htm
    [3] FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. doi: 10.2514/1.9178
    [4] BESSER H L. History of duct rocket development at Bayern-Chemine: AIAA 2008-5261[R]. Reston: AIAA, 2008.
    [5] 叶定友. 固体火箭冲压发动机的若干技术问题[J]. 固体火箭技术, 2007, 30(6): 470-473. doi: 10.3969/j.issn.1006-2793.2007.06.003

    YE D Y. Some technological problems of solid rocket ramjet[J]. Journal of Solid Rocket Technology, 2007, 30(6): 470-473(in Chinese). doi: 10.3969/j.issn.1006-2793.2007.06.003
    [6] 喻银飞, 陈雄, 李宏文. 固冲发动机燃气发生器性能分析及参数优化[J]. 计算机仿真, 2014, 31(4): 73-77. doi: 10.3969/j.issn.1006-9348.2014.04.017

    YU Y F, CHEN X, LI H W. Performance analysis and parameter optimization of gas-generator on ducted rocket[J]. Computer Simulation, 2014, 31(4): 73-77(in Chinese). doi: 10.3969/j.issn.1006-9348.2014.04.017
    [7] 张炜, 方丁酉, 夏智勋, 等. 固体火箭冲压发动机的工作特性分析[J]. 国防科技大学学报, 2000, 22(4): 19-22. doi: 10.3969/j.issn.1001-2486.2000.04.006

    ZHANG W, FANG D Y, XIA Z X, et al. Operating characteristics of solid ducted rocket[J]. Journal of National University of Defense Technology, 2000, 22(4): 19-22(in Chinese). doi: 10.3969/j.issn.1001-2486.2000.04.006
    [8] 王友银. 宽马赫数运行冲压发动机的热力性能优化分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WANG Y Y. Optimal analysis of the scramjet thermodynamic performance in wide Mach numbers[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [9] 朱美军. 超燃冲压发动机内流道设计与优化研究[D]. 杭州: 浙江大学, 2017.

    ZHU M J. Research on design and optimization of scramjet engine flowpaths[D]. Hangzhou: Zhejiang University, 2017(in Chinese).
    [10] 王青, 谷良贤, 龚春林. 超燃冲压发动机可调尾喷管多目标优化设计[J]. 推进技术, 2013, 34(3): 294-299. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201303001.htm

    WANG Q, GU L X, GONG C L. Multi-objective optimization design of geometry-variable nozzle for scramjet[J]. Journal of Propulsion Technology, 2013, 34(3): 294-299(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201303001.htm
    [11] 曹军伟, 何国强, 王希亮, 等. 空空导弹固体火箭冲压发动机设计参数优化[J]. 航空动力学报, 2015, 30(8): 2018-2024. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201508029.htm

    CAO J W, HE G Q, WANG X L, et al. Parameter optimization design of air-ducted rocket for airborne missile[J]. Journal of Aerospace Power, 2015, 30(8): 2018-2024(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201508029.htm
    [12] 王超. 超燃冲压发动机总体方案设计与优化研究[D]. 长沙: 国防科学技术大学, 2011.

    WANG C. Design and optimization research on scramjet system scheme[D]. Changsha: National University of Defense Technology, 2011(in Chinese).
    [13] 李建平, 宋文艳, 肖隐利. 超燃冲压发动机/机体一体化优化设计[J]. 航空动力学报, 2011, 26(4): 874-879. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201104021.htm

    LI J P, SONG W Y, XIAO Y L. Research on the optimization design of integrated scframjet/airframe[J]. Journal of Aerospace Power, 2011, 26(4): 874-879(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201104021.htm
    [14] 刘恒军, 沙建科, 王华. 冲压发动机导弹弹道多目标优化[J]. 系统仿真学报, 2009, 21(9): 2764-2766. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200909074.htm

    LIU H J, SHA J K, WANG H. Trajectory multi-objective optimization of missile propelled by liquid rocket ramjet[J]. Journal of System Simulation, 2009, 21(9): 2764-2766(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200909074.htm
    [15] 吴先宇. 超燃冲压发动机一体化流道设计优化研究[D]. 长沙: 国防科学技术大学, 2007.

    WU X Y. Research on design and optimization of integrated scramjet flowpath[D]. Changsha: National University of Defense Technology, 2007(in Chinese).
    [16] 张旭, 王利, 林言中, 等. 超燃冲压发动机总体化性能分析[J]. 推进技术, 2014, 35(2): 157-165. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402003.htm

    ZHANG X, WANG L, LIN Y Z, et al. Analysis of overall scramjet performance[J]. Journal of Propulsion Technology, 2014, 35(2): 157-165(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402003.htm
    [17] 李俊红, 程晓丽, 沈清. 超燃冲压发动机性能预测工程方法[J]. 推进技术, 2009, 30(2): 129-134. doi: 10.3321/j.issn:1001-4055.2009.02.001

    LI J H, CHENG X L, SHEN Q. Engineering method of scramjet engine performance prediction based on nozzle exit pressure[J]. Journal of Propulsion Technology, 2009, 30(2): 129-134(in Chinese). doi: 10.3321/j.issn:1001-4055.2009.02.001
    [18] 谢爱元, 武晓松, 于栋梁. 固体燃料冲压发动机性能预示[J]. 推进技术, 2014, 35(1): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201401004.htm

    XIE A Y, WU X S, YU D L. Prediction model of performance for solid fuel ramjet[J]. Journal of Propulsion Technology, 2014, 35(1): 8-14(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201401004.htm
    [19] 龚玉元. 固体火箭冲压发动机性能预估方法研究与导弹弹道仿真[D]. 长沙: 国防科学技术大学, 2010.

    GONG Y Y. Research on the way of solid-propellant ducted rocket performance estimate and simulation of missile trajectory[D]. Changsha: National University of Defense Technology, 2010(in Chinese).
  • 加载中
图(8)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  143
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-31
  • 录用日期:  2020-11-01
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答